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Abstract

The Timed Concurrent Constraint Language (tccp in short) is a concurrent logic language
based on the simple but powerful concurrent constraint paradigm of Saraswat. In this
paradigm, the notion of store-as-value is replaced by the notion of store-as-constraint,
which introduces some differences w.r.t. other approaches to concurrency.

In this paper, we provide a general framework for the debugging of tccp programs. To
this end, we first present a new compact, bottom-up semantics for the language that is
well suited for debugging and verification purposes in the context of reactive systems.
We also provide an abstract semantics that allows us to effectively implement debugging
algorithms based on abstract interpretation.

Given a tccp program and a behavior specification, our debugging approach automati-
cally detects whether the program satisfies the specification. This differs from other semi-
automatic approaches to debugging and avoids the need to provide symptoms in advance.
We show the efficacy of our approach by introducing an application example. We choose
a specific abstract domain and show how we can detect that a program is erroneous.

KEYWORDS: concurrent constraint paradigm, denotational semantics, abstract diagno-
sis, abstract interpretation

1 Introduction

Finding program bugs is a long-standing problem in software construction. In the

concurrent paradigms, the problem is even worse and the traditional tracing tech-
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TIN2010-21062-C02-02 and by the Universitat Politècnica de València under grant PAID-00-10.
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niques are almost useless. There has been a lot of work on algorithmic debugging

(Shapiro 1982) for declarative languages, which could be a valid proposal for con-

current paradigms, but little effort has been done for the particular case of the

concurrent constraint paradigm (ccp in short; (Saraswat 1993)). The ccp paradigm

is different from other programming paradigms mainly due to the notion of store-

as-constraint that substitutes the classical store-as-valuation model. In this way,

the languages from this paradigm can easily handle partial information: an under-

lying constraint system handles constraints on system variables. Within this family,

(de Boer et al. 2000) introduced the Timed Concurrent Constraint Language (tccp

in short) by adding to the original ccp model the notion of time and the ability

to capture the absence of information. With these features, it is possible to specify

behaviors typical of reactive systems such as timeouts or preemption actions, but

they also make the language non-monotonic.

In this paper, we develop an abstract diagnosis method for tccp using the ideas of

the abstract diagnosis framework for logic programming (Comini et al. 1999). This

framework, parametric w.r.t. an abstract program property, is based on the use of an

abstract immediate consequence operator to identify bugs in logic programs. It can

be considered as an extension of algorithmic debugging since there are instances

of the framework that deliver the same results. The intuition of the approach is

that, given an abstract specification of the expected behavior of the program, one

automatically detects the errors in the program. The framework does not require

the determination of symptoms in advance. In order to achieve an effective method,

abstract interpretation is used to approximate the semantics, thus results may be

less precise than those obtained by using the concrete semantics.

The approach of abstract diagnosis for logic programming has been applied to

other paradigms (Alpuente et al. 2003; Bacci and Comini 2010; Falaschi et al. 2007).

This research revealed that a key point for the efficacy of the resulting debugging

methodology is the compactness of the concrete semantics. Thus, in this proposal,

much effort has been devoted to the development of a compact concrete semantics

for the tccp language to start with. The already existing denotational semantics

are based on capturing the input-output behavior of the system. However, since

we are in a concurrent (reactive) context, we want to analyze and debug infinite

computations. Our semantics covers this need and is suitable to be used not only

with debugging techniques but also with other verification approaches.

Our new (concrete) compact compositional semantics is correct and fully abstract

w.r.t. the small-step behavior of tccp. It is based on the evaluation of agents over

a denotation for a set of process declarations D, obtained as least fixpoint of a

(continuous) immediate consequence operator DJDK.

Thanks to the compactness of this semantics we can formulate an efficacious

debugging methodology based on abstract interpretation which proceeds by ap-

proximating the DJDK operator producing an “abstract immediate consequence

operator” DαJDK. We show that, given the abstract intended specification Sα of

the semantics of a program D, we can check the correctness of D by a single ap-

plication of DαJDK and thus, by a static test, we can determine all the process

declarations d ∈ D which are wrong w.r.t. the considered abstract property.
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To our knowledge, in the literature there is only another approach to the debug-

ging problem of ccp languages, (Falaschi et al. 2007), which is also based on the

abstract diagnosis approach of (Comini et al. 1999). However, they consider a quite

different concurrent constraint language without non-monotonic features, which we

consider essential to model behaviors of reactive systems.

2 The Timed Concurrent Constraint language

All the languages of the ccp paradigm (Saraswat 1993) are parametric w.r.t. a

cylindric constraint system. The constraint system handles the data information

of the program in terms of constraints. In tccp, the computation progresses as the

concurrent and asynchronous activity of several agents that can (monotonically)

accumulate information in a store, or query some information from that store.

Briefly, a cylindric constraint system1 C = 〈C,�,⊗,⊕, tt ,ff ,Var ,∃〉 is composed

of a set of finite constraints C ordered by �, where ⊕ and ⊗ are the glb and lub,

respectively. tt is the smaller constraint whereas ff is the bigger one. We often

use the inverse order ` instead of � over constraints. Given a cylindric constraint

system C and a set of process symbols Π, the syntax of agents is given by the

following grammar:

A ::= skip | tell(c) |
n∑
i=1

ask(ci)→ Ai | now(c) then A1 else A2 | A1 ‖ A2 | ∃xA | p(~x)

where c and ci are finite constraints in C, p ∈ Π, x ∈ Var and ~x is the list of

variables x1, . . . , xn with 1 ≤ i ≤ n, xi ∈ Var . A tccp program P is an object of

the form D.A0, where A0 is an agent, called initial agent, and D is a set of process

declarations of the form p(~x) :−A (for some agent A).

The notion of time is introduced by defining a discrete and global clock: it is

assumed that the ask and tell agents take one time-unit to be executed. For the

operational semantics of the language, the reader can consult (de Boer et al. 2000).

Intuitively, the skip agent represents the successful termination of the agent com-

putation. The tell(c) agent adds the constraint c to the current store and stops at

the following time instant. The store is updated by means of the ⊗ operator of

the constraint system. The choice agent
∑n
i=1 ask(ci) → Ai consults the store and

non-deterministically executes (in the following time instant) one of the agents Ai,

whose corresponding guard ci holds in the current store; otherwise, if no guard is

satisfied by the store, the agent suspends. The agent now(c) then A else B behaves

like A (respectively B) if c is (respectively is not) entailed by the store. Note that

this agent can process negative information: it can capture when some information

is not present in the store since the agent B is executed both when ¬c is satisfied,

but also when neither c nor ¬c are satisfied. Moreover, differently from the ask case,

it evaluates the guard instantaneously. A ‖ B models the parallel composition of

A and B in terms of maximal parallelism (in contrast to the interleaving approach

1 See (de Boer et al. 2000; Saraswat 1993) for more details on cylindric constraint systems.
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of ccp), i.e., all the enabled agents of A and B are executed at the same time. The

agent ∃xA is used to make variable x local to A, by means of the ∃ operator of the

constraint system. Finally, the agent p(~x) takes from D the declaration of the form

p(~x) :− A and executes A at the following time instant. For the sake of simplicity,

we assume that the set D of declarations is closed w.r.t. parameter names.

3 Modeling the small-step operational behavior of tccp

In this section, we introduce a denotational semantics that models the small-step

behavior of tccp. Due to space limitations, in this paper we show the most relevant

aspects of both the concrete and the abstract semantics. The complete definitions,

as well as the proofs of all the results, can be found in (Comini et al. 2011).

First let us formalize the notion of behavior for a set D of process declarations.

Intuitively, it collects all the small-step computations associated to D as the set

of (all the prefixes of) the sequences of computational steps, for all possible initial

agents and stores.

Definition 1 (Small-step behavior of declarations)

Let D be a set of declarations, Agent the set of possible agents, and→ the transition

relation given by the operational semantics in (de Boer et al. 2000). The small-step

behavior of D is defined as follows:

BssJDK :=
⋃

∀c∈C,∀A∈Agent

BJD.AKc

where BJD.A0Kc0 := {c0 · · · · · cn | 〈A0, c0〉 → . . . → 〈An, cn〉} ∪ {ε}. We denote by

≈ss the equivalence relation between declarations induced by Bss , namely D1 ≈ss

D2 ⇔ BssJD1K = BssJD2K.

There are many languages where a compact compositional semantics has been

founded on collecting the possible traces for the weakest store, since all traces

relative to any other initial store can be derived by instance of the formers. However,

in tccp this does not work since it is not monotonic: if we have all traces for an

agent A starting from an initial store c and we execute A with a more instantiated

initial store d, then new traces, not instances of the formers, can appear.2

Furthermore, note that, since we are interested in a bottom-up approach, we

cannot work assuming that we know the initial store. However, when we have to

give the semantics of a conditional or choice agent where some guard must be

checked, we should take a different execution branch depending on its satisfiability.

Our idea is that of associating conditions to computation steps and to collect all

possible minimal hypothetical computations.

2 See (Comini et al. 2011) for some examples.



Abstract Diagnosis for tccp 5

3.1 The semantic domain

In (de Boer et al. 2000), reactive sequences are used as semantic domain for the

top-down semantics.3 These sequences consists of pairs of stores 〈c, c′〉 for each time

instant meaning that, given the initial store c, the program produces in one time

instant the store c′. The store is monotonic, thus c′ always contains more (or equal)

information than c.

As we have explained before, this information is not enough for a bottom-up

approach. The idea is to enrich the reactive sequence so that we keep information

about the essential conditions that the store must satisfy in order to make the

program proceed. We define a condition η as a pair η = (η+, η−) where η+ ∈
C (respectively η− ∈ ℘(C)) is called positive (respectively negative) component.

A condition is said to be inconsistent when its positive component entails any

constraint in the negative component or when the positive component is ff . Given

a store c ∈ C, we say that c satisfies η (written c B η) when c entails η+, η+ 6= ff

and c does not entail any constraint from η−. An inconsistent condition is satisfied

by no store, while the pair (tt , ∅) is satisfied by any store.

A conditional reactive sequence is a sequence of conditional tuples, which can

be of two forms: (a) a triple η → 〈a, b〉 that is used to represent a computational

step, i.e., the global store a becomes b at the next time instant only if a B η, or

(b) a construct stutt(C) that models the suspension of the computation due to an

ask agent, i.e., it represents the fact that there is no guard in C (the guards of the

choice agent) entailed by the current store. We need this construct to distinguish a

suspended computation from an infinite loop that does not modify the store.

Our denotations are composed of conditional reactive sequences:

Definition 2 (Conditional reactive sequence)

A conditional reactive sequence is a sequence of conditional tuples of the form

t1 . . . tn . . . , maybe ended with �, such that: for each ti = ηi → 〈ai, bi〉, bi ` ai
for i ≥ 1, and for each tj = ηj → 〈aj , bj〉 such that j > i, aj ` bi. The empty

sequence is denoted with ε. s1 · s2 denotes the concatenation of two conditional

reactive sequences s1, s2.

A set of conditional reactive sequences is maximal if none of its sequences is

the prefix of another. By M we denote the domain of sets of maximal conditional

reactive sequences, whose order is induced from its prefix closure, namely R1 v
R2 ⇔ prefix (R1) ⊆ prefix (R2). (M, v,

⊔
,
d
, ⊥, >) is a complete lattice.

3.2 Agent Semantics Evaluation Function

In order to associate a denotation to a set of process declarations, we need first to

define the semantics for agents. Let us first introduce the notion of interpretation.

3 In a top-down approach, the (initial) current store is propagated, thus decisions regarding the
satisfaction or not of a given condition can be taken immediately.
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Definition 3 (Interpretations)

Let MGC := {p(~x) | p ∈ Π, ~x are distinct variables } be the set of most general

calls. An interpretation is a function MGC→M modulo variance.4 Two functions

I, J : MGC→M are variants, denoted by I ∼= J , if for each π ∈MGC there exists

a variable renaming ρ such that (Iπ)ρ = J(πρ). The semantic domain I is the set

of all interpretations ordered by the point-wise extension of v.

The application of an interpretation I to a most general call π, denoted by I (π),

is the application I(π) of any representative I of I which is defined exactly on

π. For example, if I = (λϕ(x, y). {(tt , ∅)→ 〈tt , x = y〉})
/
∼= then I (ϕ(u, v)) =

{(tt , ∅)→ 〈tt , u = v〉}.
The technical core of our semantics definition is the agent evaluation semantic

function which, given an agent and an interpretation, builds the maximal condi-

tional reactive sequences of the agent.

Definition 4 (Agents Semantics)

Given an agent A and an interpretation I , the semantics AJAKI is defined by

structural induction:

AJskipKI = {�}
AJtell(c)KI = {(tt , ∅)→ 〈tt , c〉 ·�} (3.1)

AJ
∑n
i=1 ask(ci)→ AiKI =

⊔n

i=1
{(ci, ∅)→ 〈ci, ci〉 · (s� ci) | s ∈ AJAiKI} t⊔

{stutt(∪ni=1ci) · s | s ∈ AJ
∑n
i=1 ask(ci)→ AiKI ,∀i ∈ [1, n].ci 6= tt} (3.2)

AJnow(d) then A else BKI = {(d, ∅)→ 〈d, d〉 ·� | � ∈ AJAKI}t⊔
{(c+ ⊗ d, c−)→ 〈c⊗ d, c′ ⊗ d〉 · (s� d) | (c+, c−)→ 〈c, c′〉 · s ∈ AJAKI ,

c⊗ d B (c+ ⊗ d, c−)}t⊔
{(d,C)→ 〈d, d〉 · (s� d) | stutt(C) · s ∈ AJAKI , d B (d,C)}t⊔
{(tt , d)→ 〈tt , tt〉 ·� | � ∈ AJBKI}t⊔
{(c+, c− ∪ {d})→ 〈c, c′〉 · s | (c+, c−)→ 〈c, c′〉 · s ∈ AJBKI ,

c B (c+, c− ∪ {d})}t⊔
{(tt , C ∪ {d})→ 〈tt , tt〉 · s | stutt(C) · s ∈ AJBKI} (3.3)

AJA ‖ BKI =
⊔{

sA‖̇sB | sA ∈ AJAKI , sB ∈ AJBKI
}

(3.4)

AJ∃xAKI =
⊔{

s ∈M | ∃s′ ∈ AJAKI such that ∃xs = ∃xs′,
s′ is x-connected, s is x-invariant}

(3.5)

AJp(z)KI =
⊔{

(tt , ∅)→ 〈tt , tt〉 · s | s ∈ I (p(z))
}

Let us now illustrate the idea of the semantics. In (3.1), since a tell agent works

independently of the current store, we associate condition (tt , ∅). The second part

4 i.e., a family of elements of M indexed by MGC modulo variance.
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of the conditional tuple states that the constraint c is added during the current

computational step. Finally, the computation terminates �.

The semantics for the non-deterministic choice, described in (3.2) collects for

each guard ci a conditional sequence of the form (ci, ∅) → 〈ci, ci〉 · (s � ci). The

condition states that ci has to be satisfied by the current store, whereas the pair

〈ci, ci〉 represents the fact that the query to the store does not modify the store.

The constraint ci is in addition propagated (by means of the propagation operator

� (Comini et al. 2011)) to the sequence s (the continuation of the computation),

which belongs to the semantics of Ai. Moreover, we have to model the case when the

computation suspends, i.e., when no guard of the agent is satisfied by the current

store. Sequences representing this situation are of the form stutt(∪ni=1{ci}) ·s where

s is, recursively, an element of the semantics of the choice agent. The only case

when we do not include the stuttering sequence is when any of the guards ci is

tt . Note that, due to the partial nature of the constraint system, the fact that the

disjunction of the guards is tt is not a sufficient condition to avoid the suspension.

The definition of the conditional agent now is similar to the previous one. How-

ever, since it is instantaneous, we have 6 cases depending on the 3 possible heads

of the sequences of the semantics of A (respectively B) and on the fact that the

guard d is satisfied or not in this instant.

The semantics for the parallel composition of two agents (Equation (3.4)) is

defined in terms of an auxiliary commutative operator ‖̇ (see (Comini et al. 2011)),

which intuitively parallely combines the sequences of the two agents.

For the hiding operator (Equation (3.5)), we collect the sequences that satisfy

the restrictions regarding the visibility of the hided variables. This is formalized by

the notions of x-connected and x-invariant adapted from (de Boer et al. 2000).

Finally, the semantics of the process call p(~x) collects the sequences in the inter-

pretation I (p(~x)), delayed by one time unit, as stated in the operational semantics.

Let us show an illustrative example. Consider the tccp agent A ≡ ask(y ≥ 0) →
tell(z ≤ 0). The semantics is composed of one sequence representing the case when

the guard is satisfied, and the case when the computation suspends.

AJAKI ={ (y ≥ 0, ∅)→ 〈y ≥ 0, y ≥ 0〉 · (tt , ∅)→ 〈y ≥ 0, y ≥ 0⊗ z ≤ 0〉 ·�}
∪ {stutt(y ≥ 0) · s | s ∈ AJAKI}

3.3 Fixpoint Denotations of Declarations

Now we can define the semantics for a set of process declarations D as the fixpoint of

the immediate consequences operator DJDKI := λp(x).
⋃
p(x):−A∈DAJAKI , which

is continuous. Thus it has a least fixpoint and we can define the semantics of D as

F JDK = lfp(DJDK). As an example, in Figure 1 we represent the (infinite) set of

traces of F J{p(x) :− ∃y ( ask(y > x)→ p(x+ 1) + ask(y ≤ x)→ skip)}K.5

5 For the sake of simplicity, we assume that we can use expressions of the form x+1 directly in the
arguments of a process call. We can simulate this behavior by writing tell(x′ = x + 1)→ p(x′)
(but introducing a delay of one time unit).
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(∃y(y > x), ∅)→
〈∃y(y > x), ∃y(y > x)〉

(∃y(y ≤ x), ∅)→
〈∃y(y ≤ x), ∃y(y ≤ x)〉

stutt({y > x} ∪ {y ≤ x})

� (tt, ∅)→
〈∃y(y > x), ∃y(y > x)〉

(∃y(y > x+ 1), ∅)→
〈∃y(y > x+ 1), ∃y(y > x+ 1)〉

(tt, ∅)→
〈∃y(y > x+ 1), ∃y(y > x+ 1)〉

(∃y(y ≤ x+ 2), ∅)→
〈∃y(y = x+ 2), ∃y(y = x+ 2)〉

(∃y(y ≤ x+ 1), ∅)→
〈∃y(y = x+ 1), ∃y(y = x+ 1)〉

�

�

AJaskKI

Figure 1. Tree representation of F JDK in the example.

In (Comini et al. 2011) we proved that D1 ≈ss D2 if and only if F JD1K = F JD2K
(correctness and full abstraction of F w.r.t. ≈ss).

4 Abstract semantics for tccp: the abstraction scheme

In this section, starting from the fixpoint semantics in Section 3, we present an

abstract semantics which approximates the observable behavior of the program.

Program properties that are of interest are Galois Insertions between the concrete

domain and the chosen abstract domain. We assume familiarity with basic results

of abstract interpretation (Cousot and Cousot 1979).

We define an abstraction scheme where we define the abstraction of computations,

i.e., of maximal sets of conditional reactive sequences, by successive lifting. We start

with a function that abstracts the information component of the program, i.e., the

store, and then we build the abstraction of conditional tuple, then of conditional

reactive sequences and finally of maximal sets.

We start from a upper-approximating function τ+ : C → Ĉ into an abstract

constraint system Ĉ = 〈Ĉ, �̂, ⊗̂, ⊕̂, t̂t , ff̂ ,Var , ∃̂〉, where t̂t and ff̂ are the smallest

and the greatest abstract constraint, respectively. We often use the inverse relation
ˆ̀ of �̂. We have also a lower-approximating function τ− : ℘(C)→ Č into an abstract

constraint system Č = 〈Č, �̌, ⊗̌, ⊕̌, ťt , ff̌ ,Var , ∃̌〉.
We have two “external” operations ×̂ : C×Ĉ → Ĉ and ×̌ : C×Č → Č that update

an abstract store with a concrete constraint (coming from the program).

Abstract and concrete constraint systems are related by these conditions:

c ×̂ τ+(a) = τ+(c⊗ a) c ×̌ τ−(C) = τ−({c} ∪ C)

τ+(a⊗ b) = τ+(a) ⊗̂ τ+(b) τ−(C ∪ C ′) = τ−(C) ⊕̌ τ−(C ′)

a ` b =⇒ τ+(a) ˆ̀ τ+(b) τ−({a}) ˇ̀ τ−(C) =⇒ ∃c ∈ C. a ` c

τ+(∃ xa) = ∃̂x τ+(a) τ−({∃ xc | c ∈ C}) = ∃̌x τ−(C)

Now, an abstract condition is a pair of the form (η̂, η̌) ∈ Ĉ × Č. Similarly to the
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concrete case, given an abstract condition η̃ = (η̂, η̌) and an abstract store â ∈ Ĉ,
we say that â satisfies η̃ (written â B̃ η̃) when η̂ 6= ff̂ and â ˆ̀ η̂, but â 6ˇ̀ η̌. Given

an abstract condition η̃, â, b̂ ∈ Ĉ and č ∈ Č, we define an abstract conditional tuple

either as a triple η̃ → 〈â, b̂〉
m

, such that â B̃ η̃, or a construct of the form stuttα(č)m,

where m ∈ {0,+∞} indicates how many times the corresponding concrete tuples

appear consecutively in the concrete sequence. Given a (concrete) conditional tuple,

we define its abstraction α as

α((η+, η−)→ 〈a, b〉) = (τ+(η+), τ−(η−))→ 〈τ+(a), τ+(b)〉1

α(stutt(C)) = stuttα(τ−(C))1

Now, an abstract conditional reactive sequence is a sequence of abstract tuples

of the form: t̃1 . . . t̃m . . . , maybe ended with �, such that for each couple of tuples

t̃i = η̃i → 〈âi, b̂i〉
mi

, t̃j = η̃j → 〈âj , b̂j〉
mj

, and i 6= j, t̃i 6= t̃j . The natural number

associated to each abstract conditional tuple is needed to keep synchronization

among processes due to the particularly strong synchronization properties of the

language, as already noticed in (Alpuente et al. 2005).

The abstraction α(s) of a sequence of conditional tuples s is defined by structural

induction on the form of tuples t. It collapses all the computation steps (conditional

tuples) that, after abstraction, coincide. The base cases are α(ε) = ε and α(�) = �.

α(t · r) :=


η̃ → 〈â, b̂〉

m+1
· r̃ if α(t) = η̃ → 〈â, b̂〉

1
, α(r) = η̃ → 〈â, b̂〉

m
· r̃

stuttα(č)m+1 · r̃ if α(t) = stuttα(č)1, α(r) = stuttα(č)m · r̃
α(t) · α(r) otherwise

We extend the definition to sets of conditional sequences in the natural way. We

denote by A the domain α(M) of the sets of abstract conditional reactive sequences.

By adjunction we derive the concretization function γ such that (M, v,
⊔
,
d
, ⊥, >) −−−→−→←−−−−

α

γ

(A, ≤,
∨
,
∧
, ⊥, >), where a ≤ a′ ⇐⇒ γ(a) v γ(a′).

This abstraction can be systematically lifted to the domain of interpretations:

I −−−→−→←−−−−
α

γ
[PA→ A] so that we can derive the optimal abstraction of DJDK simply as

DαJDK := α ◦DJDK ◦γ. The abstract interpretation theory ensures that FαJDK :=

DαJDK ↑ ω is the best correct approximation of F JDK.

It turns out that DαJDKIα = λp(x).
⋃
p(x):−A∈DAαJAKIα , where AαJ·KIα is de-

fined by structural induction on the syntax in a similar way as the concrete version.

Given the similarity to the concrete case, in the following we describe only some

cases to illustrate the use of the over- and lower-approximations and the two “ex-

ternal” functions, for full details consult (Comini et al. 2011).

The �̃ operator is the abstract counterpart of the concrete version. The semantics

for the tell agent just applies the abstraction to the only concrete sequence, thus:

AαJtell(c)KIα = {(t̂t , ff̌ )→ 〈t̂t , τ+(c)〉1 ·�}.
For the now semantics, we only show the general case when the condition holds,
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and the general case when it does not hold:

AαJnow(d) then A else BKIα =

{(d ×̂ η̂, η̌)→ 〈d ×̂ â, d ×̂ b̂〉
n
· (d �̃ s̃) |

(η̂, η̌)→ 〈â, b̂〉
n
· s̃ ∈ AαJAKIα and d ×̂ â B̃ (d ×̂ η̂, η̌)}

∪ . . .

∪ {(η̂, d ×̌ η̌)→ 〈â, b̂〉
1
· (η̂, η̌)→ 〈â, b̂〉

n
· s̃ |

(η̂, η̌)→ 〈â, b̂〉
n+1
· s̃ ∈ AαJBKIα and â B̃ (η̂, d ×̌ η̌)}

∪ . . .

5 Abstract diagnosis of timed concurrent constraint programs

Now, following the ideas of (Comini et al. 1999), we define the abstract diagnosis

of tccp. The framework of abstract diagnosis (Comini et al. 1999) comes from the

idea of considering the abstract versions of Park’s Induction Principle6. It can be

considered as an extension of declarative debugging since there are instances of the

framework that deliver the same results. However, in the general case, diagnosing

w.r.t. abstract properties relieves the user from having to specify in excessive detail

the program behavior (which could be more error-prone than the coding itself).

Let us now introduce the workset of abstract diagnosis. Having chosen a property

of the computation α of interest (an instance of the abstraction scheme of Section 4),

given a set of declarations D and Sα ∈ A, which is the specification of the intended

behavior of D w.r.t. the property α, we say that

1. D is (abstractly) partially correct w.r.t. Sα if α(F JDK) ≤ Sα.

2. D is (abstractly) complete w.r.t. Sα if Sα ≤ α(F JDK).

3. D is totally correct w.r.t. Sα, if it is partially correct and complete.

It is worth noting that in this setting the user can only reason in terms of the

properties of the expected concrete semantics without being concerned with (ap-

proximate) abstract computations.

The diagnosis determines the “originating” symptoms and, in the case of in-

correctness, the relevant process declaration in the program. This is captured by

the definitions of abstractly incorrect process declaration and abstract uncovered

element.

Definition 5

Let D be a set of declarations, R a process declaration and {e},Sα ∈ A.

R is abstractly incorrect w.r.t. Sα if DαJ{R}KSα 6≤ Sα.

e is an uncovered element w.r.t. Sα if {e} ≤ Sα and {e} ∧ DαJDKSα = ⊥.

Informally, R is abstractly incorrect if it derives a wrong abstract element from the

6 A concept of formal verification that is undecidable in general.
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intended semantics. e is uncovered if all process declarations cannot derive it from

the intended semantics.

It is worth noting that correctness and completeness are defined in terms of

α(F JDK), i.e., in terms of abstraction of the concrete semantics. Thus, the abstract

version of algorithmic debugging (Shapiro 1982), which is based on symptoms (i.e.,

deviations between α(F JDK) and Sα), would require the construction of α(F JDK)

and therefore a fixpoint computation. On the other hand, abstractly incorrect pro-

cess declarations and abstract uncovered elements are defined directly in terms of

just one application of DαJDK to Sα. The issue of the precision of the abstract

semantics becomes therefore relevant in establishing the relation between the two

concepts. i.e., of proving which is the relation between abstractly incorrect pro-

cess declarations and abstract uncovered elements on one side, and correctness and

completeness, on the other side.

Theorem 1

1. If there are no abstractly incorrect process declarations in D, then D is par-

tially correct w.r.t. Sα.

2. Let D be partially correct w.r.t. Sα. If D has abstract uncovered elements

then D is not complete.

The results when applying the diagnosis w.r.t. approximate properties may be

weaker than those that can be achieved on concrete domains just because of ap-

proximation. Abstract incorrect process declarations are in general just a warning

about a possible source of errors. Because of the approximation, it can happen that

a (concretely) correct declaration is abstractly incorrect. However, as shown by

the following theorem, all concrete errors are detected, as they lead to an abstract

incorrectness or abstract uncovered.7

Theorem 2

Let r be a process declaration, S a concrete specification.

1. If DJ{r}KS 6v S and α(DJ{r}KS ) 6≤ α(S ) then r is abstractly incorrect w.r.t.

α(S ).

2. If there exists an abstract uncovered element a w.r.t. α(S ), such that γ(a) v S
and γ(⊥) = ⊥, then there exists a concrete uncovered element e w.r.t. S (i.e.,

e v S and e u DJDKS = ⊥).

There is property of our proposal which is particularly useful for applications: it

can be used with partial specifications and also with partial programs. Obviously,

one cannot detect errors in process declarations involving functions which have not

been specified. But for the process declarations that involve only functions with

a specification, the check can be made, even if the whole program has not been

written yet. This includes the possibility of applying our “local” method to all

parts of a program not involving constructs which we cannot handle (yet). With

other “global” approaches such programs could not be checked at all.

7 The reviewer can find proofs of these results in appendix.
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The abstract domain for abstract sequences that we have defined is not noetherian

due to the use of the index in each tuple. However, we cannot get rid of it since

it is needed to keep synchronization among parallel processes. Nevertheless, if we

use an abstract domain for the constraint system which is noetherian, since the

store evolves monotonically, it holds that the number of conditional tuples that can

appear in a sequence is finite. This property states the kind of specifications that

we will be able to handle in an efficacious way.

5.1 Examples of application of the framework

Let us now show some illustrative examples of the approach. The first example

shows the new ability of our approach that can deal with the constructors that

introduce the non-monotonic behavior of the system, in particular the now agent.

Example 1

We model a (simplified) time-out(n) process that checks for, at most, n times units

if the system emits a signal telling that the process evolves normally (system = ok).

When the signal arrives, the system emits the fact that there is no alert (alert =

no)8. If the time limit is reached, the system should set the signal alert to yes. Let

d0, dn, daction be the following declarations:

time-out(0):− now(system = ok) then action else

ask(tt)→ time-out(0)

time-out(n):− now(system = ok) then action else

ask(tt)→ time-out(n− 1)

action:− tell(alert = no)

In this case, due to the simplicity of the constraint system, the abstract versions

coincide with the concrete one and the two external functions are the ⊕̂ and ⊕̌
operators. Let us now consider the following specification. For d0 we expect that, if

the ok signal is present, then it ends with an alert = no signal, otherwise the alert

is emitted. The specification for dn is similar, but we add n sequences, since we

have the possibility that the signal arrives at each time instant before n.

Sα(time-out(0)) = { (system = ok , ff̌ )→ 〈system = ok , system = ok〉1·

(t̂t , ff̌ )→ 〈system = ok , system = ok ⊗̂ alert = no〉1 ·�}

∪ {(t̂t , {system = ok})→ 〈t̂t , t̂t〉1 · (t̂t , ff̌ )→ 〈t̂t , alert = yes〉1 ·�}
Sα(time-out(n)) = { (t̂t , {system = ok})→ 〈t̂t , t̂t〉m·

(system = ok , ff̌ )→ 〈system = ok , system = ok〉1·

(t̂t , ff̌ )→ 〈system = ok , system = ok ⊗̂ alert = no〉1 ·� | 0 ≤ m < n}

∪ {(t̂t , {system = ok})→ 〈t̂t , t̂t〉n+1 · (t̂t , ff̌ )→ 〈t̂t , alert = yes〉1 ·�}

Sα(action) = {(t̂t , ff̌ )→ 〈t̂t , alert = no〉1 ·�}

DαJ{d0}KSα is:

8 The classical timeout would restart the countdown by recursively calling time-out(n).
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{(system = ok , ff̌ )→ 〈system = ok , system = ok〉1·

(t̂t , ff̌ )→ 〈system = ok , system = ok ⊗̂ alert = no〉1 ·�}

∪ {(t̂t , {system = ok})→ 〈t̂t , t̂t〉1 · (system = ok , ff̌ )→ 〈system = ok , system = ok〉1·

(t̂t , ff̌ )→ 〈system = ok , system = ok ⊗̂ alert = no〉1 ·�}

∪ {(t̂t , {system = ok})→ 〈t̂t , t̂t〉2 · (t̂t , ff̌ )→ 〈t̂t , alert = no〉1 ·�}

Due to the last sequence, DαJ{d0}KSα 6≤Sα, so we conclude that d0 is (abstractly)

incorrect. In fact, the recursive call in the else branch of the declaration is not

what we expect as behavior of a time-out. The correct declaration d′0 replaces the

recursive call by tell(alert = yes). DαJ{d′0}KSα ≤ Sα, thus d′0 is abstractly correct.

Our second example shows a system already studied in (Falaschi et al. 2007). We

have adapted it to the tccp language so that we show how our semantics differs

from theirs. It is important to remark that this example does not handle negative

information, differently from Example 1. In this case, we check whether an error

signal arrives, in other words, someone must tell us that such situation occurs. In

the timeout example, we are able to detect that something goes wrong due to the

absence of the ok signal, not thanks to a specific signal.

Example 2

Let D be a set containing the following declarations (d1 and d2, respectively). The

idea of the system is to control, at each time instant, if a failure signal has been

arrived. In that case, an action is taken (for instance just a constraint stop is added).

control(i, o) :− ∃o′, i′. now(i = [fail | ]) then (tell(i = [fail |i′]) ‖ action(o, o′))

else skip

‖ ask(tt)→ control(i′, o′)

action(o, o′) :− tell(o = [stop|o′])

The concrete domain for the constraint system is composed by the elements fail ,

stop, tt and ff . The abstract setting is similar to the one in the previous exam-

ple. Due to the monotonicity of the store, we have to use streams to model the

imperative-style variables (de Boer et al. 2000). Following this idea, the abstraction

for concrete streams is defined as the last instantiated value in the stream. The

concretization of one stream is defined as all the concrete streams whose last value

is a concretization of the abstract one. We write a dot on a predicate symbol (e.g.

=̇) to denote that we want to check it for the last instantiated value of a stream.

Let us now check that the action process finishes in one time instant. To this end,

we define the following specification: Sα(action(x1, x2)) = {(t̂t , ff̌ )→ 〈t̂t , x1=̇stop〉1·
�}. If we compute one iteration of the semantic operator on the specification, we get

DαJ{d2}KSα = {(t̂t , ff̌ )→ 〈t̂t , τ+(o = [stop|o′])〉1 ·�} = {(t̂t , ff̌ )→ 〈t̂t , o=̇stop〉1 ·
�}, thus we conclude that the declaration d2 is correct w.r.t Sα.

Let us now consider the control process and its specification in order to show the

relevance of the property captured by the abstraction:
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Sα(control(f, s)) ={ (t̂t , {f=̇fail})→ 〈t̂t , t̂t〉n·

(f=̇fail , ff̌ )→ 〈f=̇fail , f=̇fail ⊗̂ ∃̂ f ′(f ′=̇true)〉
1
·

(t̂t , ff̌ )→ 〈f=̇fail ⊗̂ ∃̂ f ′(f ′=̇true), f=̇fail ⊗̂ ∃̂ f ′(f ′=̇true) ⊗̂ s=̇stop〉
1
·� | n ≥ 0}

∪ {(t̂t , {f=̇fail})→ 〈t̂t , t̂t〉+∞}

Note that this specification is infinite. In order to make the abstract diagnosis

process effective, one solution would be to use our framework with a (much concrete)

depth-k abstraction (similar to what is done in (Falaschi et al. 2007)) in order to

check only up to a given time instant k. This it is not equivalent to model-check

(for instance) an equivalent temporal property (written in some temporal logic). We

remark that this problem is natural when we try to specify properties corresponding

to an abstract property that is not Noetherian.

Finally, we show how one can work with the abstraction of the constraint system,

and also how we can take advantage of our abstract domain.

Example 3

Let us consider a system with a single declaration and the abstraction of the con-

straint system that abstracts integer variables to a (simplified) interval-based do-

main with abstract values {>,posx,negx, x>10, x≤10,⊥}.
p(x) :− now(x>̇0) then ∃x′ tell(x = [ |x′]) ‖ tell(x′ = [x + 1| ]) ‖ p(x′)

else ∃x′′ tell(x = [ |x′′]) ‖ tell(x′′ = [x− 1| ]) ‖ p(x′′)

We define the following intended specification to specify that, (a) if the parameter

is greater than 10, then the last value of the stream (written ẋ1 will always be

greater than 10; (b) if the parameter is negative, then the value is always negative

Sα(p(x1) ={(ẋ1>10, ff̌ )→ 〈ẋ1>10, ẋ1>10〉+∞}

∪ {(negẋ1), ff̌ )→ 〈negẋ1), negẋ1〉
+∞}

This is a partial specification of the system behavior, but as we have already ex-

plained, this is not a problem in the abstract diagnosis approach. The two abstract

sequences are representing infinite computations thanks to the +∞ index in the

last tuple. Therefore, although we cannot tackle infinite specifications, finite spec-

ifications that represent infinite computations can be considered and effectively

handled. In fact, we can compute DαJ{d}KSα :

{ {(ẋ>10, ff̌ )→ 〈ẋ>10, ẋ>10〉1 · (ẋ>10, ff̌ )→ 〈ẋ>10, ẋ>10〉+∞}

∪ {(negẋ), ff̌ )→ 〈negẋ, negẋ〉
1 · (negẋ, ff̌ )→ 〈negẋ, negẋ〉

+∞}}
=

{ {(ẋ>10, ff̌ )→ 〈ẋ>10, ẋ>10〉+∞} ∪ {(negẋ, ff̌ )→ 〈negẋ, negẋ〉
+∞}}

We can see that in the first computed sequence, although the initial condition for

the now agent is x>̇0, when using the interpretation of p(x) and combining it with

the (partial) computed sequence, we merge the conditions and we get the more

restrictive constraint of ẋ>10. We can see that DαJ{d}KSα ≤ Sα, thus we conclude

that the declaration is correct w.r.t. Sα.
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6 Related Work

A top-down (big-step) denotational semantics for tccp is defined in (de Boer et al.

2000) for terminating computations. In that work, a terminating computation is

both, a computation that reaches a point in which no agents are pending to be

executed, and also a computation that suspends since there is no enough informa-

tion in the store to make the choice agents evolve. Our semantics is a bottom-up

(small-step) denotational semantics that models infinite computations, and also

distinguishes the two kinds of terminating computations aforementioned. Concep-

tually, a suspended computation has not completely finished its execution, and, in

some cases, it could be a symptom of a system error. Thus, the new semantics is

well suited to handle, not only functional systems (where an input-output semantics

makes sense), but also reactive systems.

In (Falaschi et al. 2007), a first approach to the declarative debugging of a ccp

language is presented. However, it does not cover the particular extra difficulty of

the non-monotonicity, common to all timed concurrent constraint languages. As

we have said, this ability is crucial in order to model specific behaviors of reactive

systems, such as timeouts or preemption actions. This is the main reason why our

abstract (and concrete) semantics are significantly different from (Falaschi et al.

2007) and from formalizations for other declarative languages.

The idea of using two different mechanisms for dealing with positive and negative

information in our abstraction scheme is inspired by (Alpuente et al. 2005), where

two entailment relations were used to get a correct approach, based on source-to-

source transformation, to the abstraction of tccp programs.

7 Conclusion and Future Work

We have presented a new compact, bottom-up semantics for the tccp language which

is correct and fully abstract w.r.t. the behavior of the language. This semantics

is well suited for debugging and verification purposes in the context of reactive

systems.

Then, an abstract semantics that is able to specify (a kind of) infinite computa-

tions is presented. It is based on the abstraction of computation sequences by using

two functions that satisfy some properties in order to guarantee correctness. All

our examples satisfy those conditions. The abstract semantics keeps the synchro-

nization among parallel computations, which is a particular difficulty of the tccp

language. As already noticed in (Alpuente et al. 2005), the loss of synchronization

in other ccp languages just implies a loss of precision, but in the case of tccp, due

to the maximal parallelism, it would imply a loss of correctness.

Finally, we have adapted the abstract diagnosis approach to the tccp language

employing the new semantics as basis. We have presented some illustrative examples

that show the new features of our approach w.r.t. other paradigms, and also its

limitations.

As future work, we intend to work on abstractions of our semantics to domains
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of temporal logic formulas, in order to be able to specify safety and/or liveness

properties, and to compare its models w.r.t. the program semantics.
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Appendix A Proofs (For referees)

Proof of Theorem 1

Point 1 By hypothesis ∀r ∈ D. DαJ{r}KSα ≤ Sα. Hence DαJDKSα ≤ Sα, i.e., Sα
is a pre-fixpoint of DαJDK. Since α(F JDK) ≤ FαJDK = lfp DαJDK, by Knaster–

Tarski’s Theorem α(F JDK) ≤ FαJDK ≤ Sα. The thesis follows by definition of

correctness.

Point 2 By construction α◦DJDK◦γ ≤ DαJDK, hence α◦DJDK◦γ◦α ≤ DαJDK◦α.

Since id v γ ◦ α, it holds that α ◦ DJDK ≤ α ◦ DJDK ◦ γ ◦ α and α ◦ DJDK ≤
DαJDK ◦ α. Hence,

α(F JDK) = [ since F JDK is a fixpoint ]

α(DJDKF JDK) ≤ [ by α ◦ DJDK ≤ DαJDK ◦ α ]

DαJDKα(F JDK) ≤ [ since DαJDK is monotone and D is partial correct ]

DαJDKSα

Now, ifD has an abstract uncovered element e i.e., {e} ≤ Sα and {e} ∧ DαJDKSα =

⊥, then {e} ∧ α(F JDK) = ⊥ and Sα 6≤ α(F JDK). The thesis follows from defini-

tion of completeness.

Proof of Theorem 2

Point 1 Since S v γ ◦α(S ), by monotonicity of α and the correctness of DαJ{r}K,

it holds that α(DJ{r}KS ) ≤ α(DJ{r}Kγ◦α(S )) ≤ DαJ{r}Kα(S ). By hypothesis

α(DJ{r}KS ) 6≤ α(S ), thereforeDαJ{r}Kα(S ) 6≤ α(S ), since α(DJ{r}KS ) ≤ DαJ{r}Kα(S ).
The thesis holds by Definition 5.

Point 2 By hypothesis a ≤ α(S ) and a ∧ DαJDKα(S ) = ⊥. Hence γ(a) u γ(DαJDKα(S )) =

⊥ since γ(⊥) = ⊥ and γ preserves greatest lower bounds. By construction

DαJDK = α◦DJDK ◦γ, thus γ(a) u γ(α(DJDKγ(α(S )))) = ⊥. Since id v γ ◦α and

by monotonicity of DJDK, γ(a) u DJDKS = ⊥. By hypothesis γ(a) v S hence

γ(a) is a concrete uncovered element.


