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Abstract

The Timed Concurrent Constrain programming (tccp in short) is a concurrent logic language
obtained by extending the cc paradigm with the notion of time and a suitable mechanism to
model time-outs and preemptions. Thanks to these features, tccp is a suitable language to model
both concurrent and reactive systems.

The existing formal techniques for the verification of tccp are based on model checking. Given
a program P and a temporal formula φ, model checking essentially works by browsing the
structure of some form of model M (which represents the behavior of P ) to check if φ is valid.
This implies that the model M has to be built and, especially in presence of concurrency, this
model is quite huge. This problem is well known in the literature and it is called state-explosion
problem.

The core of my research is the definition of a semantic framework for tccp for the formal
verification of complex concurrent and reactive systems by using abstract interpretation theory.
This approach is based on the definition of a concrete semantics for tccp which is suitable to
be approximated by using standard abstract interpretation results. In this way, it is possible to
define debugging and verification tools for tccp without the burden of modeling the system first.
Thus, abstract interpretation becomes a valid alternative to model checking, since it overcomes
the state-explosion problem.

1 Introduction

Nowadays, time aspects are essential to an increasingly large number of applications

such as the modeling, specification and verification of concurrent and reactive systems.

A concurrent system contains different components that run in parallel and interact with

each other. Reactive systems are those systems that interact continuously with their

environment and that require the specification of some timing constraints, for example,

that a certain signal is expected in a bounded period of time.

Often, these systems are classified as critical, i.e., a single error in the software can lead

to great loss in human lives or money. For example, systems that implement electronic

financial transitions, electronic commerce, medical instruments, or air traffic control.
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Formal methods are a collection of notations and techniques for describing, verifying and

analyzing systems. For critical systems it is necessary to use formal methods in order

to be sure that the system behaves correctly. Also non-critical systems can be object of

formal verification whenever possible.

Many formalisms have been developed to model concurrent systems. One of those

formalisms is the Concurrent Constraint (cc) paradigm of Saraswat (Saraswat 1993). It

differs from other paradigms mainly due to the notion of store-as-constraint that replaces

the classical store-as-valuation model. Thanks to this notion, it is possible to check the

absence of information, as well as its presence. The Timed Concurrent Constrain pro-

gramming (de Boer et al. 2000) (tccp in short) is a concurrent logic language obtained

by extending ccp with the notion of time and a suitable mechanism to model time-outs

and preemptions. Thanks to these features, tccp is a suitable language to model both

concurrent and reactive systems.

The existing formal techniques for the verification of tccp are based on model checking.

Model checking (Clarke et al. 1996) is a verification method that, given a graph repre-

sentation of the program and a temporal logic formula, is able to check if the program

satisfies the formula. However, this method suffers the state-explosion problem, i.e., the

dimension of the graph grows exponentially w.r.t. the dimension of the program. This

problem limits the use of model checking, especially in presence of concurrency.

The core of my research is the definition of a semantic framework for tccp based on

abstract interpretation with the aim of formally verify complex concurrent and reactive

systems. The first step towards this purpose is the definition of a concrete denotational

semantics for tccp which is suitable to be used in the abstract interpretation framework.

Then, this concrete semantics is approximated in order to define debugging and veri-

fication tools for tccp, which are correct by construction, by using standard results of

abstract interpretation theory. The main advantage of this approach is that, contrary to

model checking, it is not necessary to build the model of the system (which can be huge).

2 Background and overview of the existing literature

In this section, I present an overview of the state of the art regarding the modeling and

the formal verification of concurrent and reactive systems in the context of the concurrent

constraint paradigm.

2.1 Modeling concurrent and reactive systems

Concurrent systems consist of multiple agents (also called processes) that interact among

each other. There are many models for concurrent systems. Some examples are the process

calculi CCS (Milner 1980), CSP (Hoare 1978) or the ACP (Bergstra and Klop 1985).

The model considered in this thesis is the Concurrent Constraint paradigm (cc paradigm

or ccp) defined in (Saraswat 1989; Saraswat 1993; Saraswat and Rinard 1990) as a sim-

ple and powerful model of concurrent computation. In this computational model, the

notion of store-as-valuation from von Neumann is replaced with the notion of store-as-

constraint. Thus, the cc paradigm is parametric w.r.t. a constraint system (see (Saraswat

et al. 1991)) where, instead of knowing the specific value of a variable, just partial infor-

mation is available. In this formalism, the agents exchange information through a global
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constraint store that is common to all agents. Essentially, agents can add new information

in the global store, and query about its content.

A few years after the introduction of ccp, Saraswat, Jagadeesan and Gupta defined an

extension over time of the cc paradigm. This new language, called Temporal Concurrent

Constraint (tcc) language (Saraswat et al. 1993; Saraswat et al. 1994) was inspired by

synchronous languages such as Esterel (Berry 2000), Lustre (Caspi et al. 1987) or

Signal (Gautier and Le Guernic 1987). tcc is able to specify reactive systems, especially

real-time and embedded ones (a small device designed for specific control functions within

a larger system). The key idea was to introduce a notion of discrete time and some

constructs which allow to model notions such as time-outs or preemptions. A time-out

waits for a limited period of time for an event to occur, if this event does not happen, then

an exception is executed. A preemption consists in the ability of detecting an event and,

as a consequence, aborting the current process and executing a new one. As pointed out

in (Saraswat et al. 1994), the essence of the time-out and the preemptions mechanisms

is in the ability to detect the absence of an event, as well as its presence.

In the following years, some extensions of tcc were introduced to improve the expres-

sivity of the language and to model more complex systems. In (Saraswat et al. 1996), the

Timed Default Concurrent Constraint programming is defined to model strong preemp-

tions: the abort of the current process and the execution of the new one must happen

at the same time of the detection of the event. The notion of non-determinism was in-

troduced into the tcc model a few years later in (Palamidessi and Valencia 2001) by

defining the ntcc language. Finally, in 2007, Olarte, Palamidessi and Valencia introduced

the Universal Timed Concurrent Constraint language (utcc) (Olarte et al. 2007; Olarte

and Valencia 2008) with the aim of extending tcc with the notion of mobility in the sense

of Milners π-calculus (Milner et al. 1992a; Milner et al. 1992b).

As an alternative to tcc, in 1999, de Boer, Gabbrielli and Meo presented a different

approach to extend the cc paradigm with a notion of discrete time inspired by the process

algebra model: the Timed Concurrent Constraint programming (in short tccp) (de Boer

et al. 2000). tccp is a Turing powerful non-deterministic language that interprets the

parallel composition in terms of maximal parallelism. The notion of time is introduced

by means of a global discrete clock. A single time unit corresponds to the time that a

process takes to perform a constraint store elementary action (adding information or

querying the global constraint store). Furthermore, it introduces some constructs that

check for the absence of information in the constraint store, allowing one to implement

behaviors typical of reactive systems, such as time-out and weak preemption. Thanks to

its features, tccp is suitable to model large and complex concurrent timed systems. For

this reason, we choose to define an abstract interpretation framework for semantics and

verification of tccp programs.

2.2 Modeling the behavior in timed concurrent constraint languages

In order to apply efficiently semantics-based verification techniques we need a semantics

that is fully-abstract w.r.t. the small-step behavior of tccp, compositional, bottom-up,

goal-independent and condensed. The semantics already proposed in the literature for

tccp and for the other similar languages of the Concurrent Constraint paradigm do not

meet all these good properties. Let us present an overview of these semantics.
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In (de Boer et al. 1995), the difficulties for handling nondeterminism and infinite be-

havior in the ccp paradigm were investigated. The authors showed that the presence of

nondeterminism and synchronization require relatively complex structures for the deno-

tational model of (non timed) ccp languages. Moreover, infinite behaviors (which become

natural in the timed extensions) are an additional complication. In most of the seman-

tics of the cc paradigm the solution to all these difficulties has been traditionally based

on the introduction of restrictions on the language for the definition of the semantics.

These restrictions usually regards choice agents, hiding operators (which introduce local

variables) and non-monotonic operators. Non-monotonic operators are used to detect the

absence of information and are essential to model specific behaviors of reactive systems,

such as time-out or preemption. In fact, they give rise to non-monotonic behaviors, which

are complex to be modeled in a compositional semantics.

The semantics for tcc (Saraswat et al. 1994)), ntcc (Palamidessi and Valencia 2001) and

utcc (Falaschi et al. 2009; Olarte and Valencia 2008) avoid the non-monotonic behavior

in order to have fully abstraction and compositionality. The considered fragment is called

locally-independent and avoids the interaction between local and non-monotonic opera-

tors. These semantics model the small-step behavior (i.e., how the state evolves at each

time instant) under the assumption of absence of stimuli from the external environment,

which is modeled as an integrated part of the program.

In (de Boer et al. 2000) the authors presented a denotational semantics fully-abstract

w.r.t. the input-output behavior of tccp programs, under some assumptions on the un-

derlying constraint system. However, this semantics only deals with finite computations

and it does not consider infinite computations that are essential to describe the behavior

of reactive systems.

To our knowledge, the only compositional semantics that is fully abstract w.r.t. the

small-step behavior for a dialect of ccp with non-monotonic behavior was defined for the

Default tcc language (Saraswat et al. 1999), and it makes use of default values (stable

assumptions for the negative information) in order to model strong preemption. This also

aids to overcome the problem of the non-monotonic behavior. However, this semantics is

not condensed since it contains a lot of redundant information.

2.3 Formal verification of timed concurrent constraint languages

The verification of a system consists in checking its correctness w.r.t. a given intended

behavior. Formal verification techniques are based on some mathematical theory and

can assure that a program behaves as expected. Thus, they are suitable to verify critical

systems, since they can assure the absence of errors.

The existing formal techniques for the verification of tccp are based on model checking

(Falaschi and Villanueva 2006). The main drawback of this technique is the combinatorial

blow up of the state-space. This problem, called state-explosion problem, becomes even

worse for concurrent systems: a system with n identical processes each of them having m

states, in the worse case has mn states. To mitigate this problem two different approaches

were proposed: the abstract model checking in (Alpuente et al. 2005b; Alpuente et al.

2005a) that reduce the size of the initial model by means of an approximation, and the

symbolic model checking in (Alpuente et al. 2003) that use a symbolic representation

of the model. Although these methods enhance the applicability of model checking, the
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combinatory explosion of the states, especially for concurrent systems, is still an intrinsic

problem.

A possible approach to avoid this issue is the use of approximation techniques, such as

abstract interpretation, in order to define verification and diagnosis tools. Because of the

approximation, these techniques are correct but in general not complete, since they can

originate false positive. However, they are a good alternative to model checking, since

they are in general more efficient and they can assure the absence of errors in a system

w.r.t. the expected behavior.

In (Falaschi et al. 2007), a first approach to the declarative debugging of a ccp lan-

guage is presented. Falaschi et al. introduce a semantic framework for ntcc and, by using

standard abstract interpretation techniques, they define an abstract diagnosis method.

This approach has some drawbacks. First of all, it does not cover the particular extra

difficulty of modeling the semantics of non-monotonic operators. Furthermore, the au-

thors approximate infinite sequences by cutting it at a given depth, thus they cannot

verify with enough precision the infinite behaviors typical of reactive systems. In 2009 a

similar approach was presented in (Falaschi et al. 2009) for utcc.

In (de Boer et al. 2001; de Boer et al. 2002), a temporal logic is introduced for rea-

soning about tccp programs, joint to a sound and complete proof system. This logic is

an extension of the Linear Temporal Logic (LTL) presented in (Manna and Pnueli 1992)

where logic propositions are replaced with constraints.

An analogous work was made for ntcc. In (Palamidessi and Valencia 2001; Nielsen

et al. 2002) ntcc is equipped with a temporal logic, called CLTL (Constraint LTL),

able to express program specifications. In (Valencia 2005), some decidability results for

the verification of ntcc programs using CLTL specifications are presented. The author

shows that for the locally-independent fragment of ntcc, it is possible to automatically

verify a negation-free CLTL formula. The decidability of this verification follows from

the monotonicity of the locally-independent fragment and the absence of recursion, but

it can be noticed that not even this approach is able to deal with the whole language, in

particular with non-monotonic operators.

3 Goal of the research

As already stated in the introduction, our goal is to define an abstract interpretation

framework for timed concurrent constraint languages, with the aim of verifying complex

concurrent and reactive systems.

The definition of an appropriate concrete semantics, capable of modeling the proper-

ties of interest, is a key point in abstract interpretation (Cousot and Cousot 1977). In

particular the concrete semantics has to be:

• fully-abstract w.r.t. the tccp small-step behavior,

• compositional and bottom-up,

• goal-independent, i.e., the fixpoint computation does not depend on the initial

agent but only on the process declarations, and

• as condensed as possible, i.e., it should not contain redundant elements.

These requirements, especially the condensedness, are particularly relevant to speed up

convergence of the approximated semantics fixpoint computation and to improve the
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precision of the approximation. As explain in Section 2, non-determinism, local variables

and timing constructs which handle negative information significantly complicates the

definition of a compositional and condensed semantics. The solutions to all the men-

tioned difficulties (for ccp and its time extensions) have been traditionally based on the

introduction of restrictions on the language. However, since we are interested in applying

the semantics to develop (semantics-based) program manipulation tool – like debuggers,

verifiers and analyzers of complex temporal, concurrent and reactive systems – for us this

solution is simply not feasible. Furthermore, we are interested in modeling the behavior

of reactive systems. As said before, these systems strongly depend on time and interact

continuously with the environment for an infinite period. Thus, we need a semantics that

is able to deal also with infinite computations, and this adds another difficulty to the def-

inition of a fully-abstract model. All these requirements are crucial to design efficacious

semantic-based debugging and verification tools based on abstract interpretation.

Another important issue is the choice of a suitable abstract domain in which the

approximated semantics is evaluated. It is important to find a good trade-off between

the precision of errors that can be detected and the effort in providing the specification.

Obviously, if we use more abstract domains we lose precision and we can detect less

errors, but the specifications are shorter and easier to be written. On the contrary, by

using more precise (or more concrete) abstract domains we gain in precision but the

specification become bigger and more error-prone.

4 Current status of the research

In (Comini et al. 2013a) we have developed a new (small-step) compositional semantics

for tccp which is (correct and) fully abstract w.r.t. the small-step behavior of full tccp.

Since tccp was originally defined to model reactive systems, that many times include

systems that do not terminate with a purpose, we have developed our semantics to deal

also with non-terminating computations.

Our idea is to associate to a tccp program a set of sequences (called conditional state

sequences) that models the evolution of the state in a compact way. We enrich classi-

cal behavioral traces (i.e., simple sequences of constraints modeling the evolution of the

constraint store) with information about the essential conditions that the store must

(or must not) satisfy in order to make the program proceed with one or another exe-

cution branch. Thus, we associate conditions to the store of each computation step and

then we collect (only) the most general hypothetical computations. These conditions are

constructed by using the information in the guards of the constructs of a program.

In this way, we obtain a condensed semantics which deals with non-monotonicity, since

into denotations we have the minimal information that has to be used to exploit com-

putations arising from absence of information. Due to its compactness, our semantics is

shown to be suitable for verification and debugging purposes based on abstract interpre-

tation.

In (Comini et al. 2013a) we also define a big-step semantics which tackles also outputs

of infinite computations. This semantics abstracts away from the information about the

evolution of the state and keeps only the the first and the final computed global constraint

store. We prove that its fragment for finite computations is (essentially) isomorphic to the

traditional big-step semantics of (de Boer et al. 2000). Moreover, we also formally prove
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that it is not possible to have a correct input-output semantics which is defined solely

on the information provided by the input/output pairs (i.e., some more information into

denotations is needed).

As already said, the main aim of my research project is the definition of a fully-

automatic verification method for tccp. Starting from our semantics, we deduce, using

standard abstract interpretation techniques, an approximating semantics based on the

abstraction of the underlying constraint system (Comini et al. 2011). The elements of the

abstract domain are abstract compact sequences which contain approximated information

and collapse in an unique state all the consecutive states that becomes equal after the

abstraction. This domain is suitable for verification features since it allows to express

in a compact way the properties of both finite and infinite computations. Given a tccp

program and an (abstract) behavior specification, we apply abstract diagnosis (Comini

et al. 1999) to automatically detect if the program meets the specification. In this way,

we obtain a fully-automatic verification method for tccp.

Differently from the approach presented in (Falaschi et al. 2007), we do not make any

restriction on the program syntax since we are able to deal also with non-monotonic

operators. Furthermore, our abstraction keeps the information about infinite sequences.

As claimed in Section 2, these abilities are crucial in order to model and verify interesting

properties of reactive systems.

Our proposal has some important benefits: it is correct by construction and it is fully-

automatic. Moreover, since the semantics is defined compositionally, all the checks are

defined on each process declaration in isolation. Obviously, one cannot detect errors in

declarations involving processes which have not been specified, but for the declarations

that involve processes that have a specification, the check can be made, even if the whole

set of declarations has not been written yet. This is particularly useful for applications,

since the diagnosis could be used from the beginning of the development phase. Moreover,

it could be performed incrementally, thus the overall computational cost can be parceled

over time. On the contrary, model checking can be applied only with a fully specified

system.

As already mentioned, the main drawback of this approach (and in general of all

approximation based methods) is the loss of precision due to the semantics abstraction.

In fact, because of the approximation, it can happen that a (concretely) correct program

is marked as (abstractly) incorrect, generating a false positive. However, all concrete

errors are assured to be detected.

In our first approach to the abstract diagnosis of tccp (Comini et al. 2011), the specifica-

tion phase is quite error-prone, since it is necessary to list extensionally all the (abstract)

conditional state sequences that represent the intended behavior of the program. To get

over this problem we propose a better way to specify the desired properties of a program:

by using a formula written in a suitable temporal logic as in model checking.

In (Comini et al. 2013b) we define an extension of abstract diagnosis for tccp (Comini

et al. 2011) where the abstract domain is formed by LTL formulas. It is worth noticing,

that this method does not require to build any model at all, while all the proposals of

model checking have in common that a subset of the model of the (target) program has

to be built, and sometimes the needed fragment is quite huge.

More specifically, we have defined an abstract semantics for tccp, by using standard

abstract interpretation techniques, where the conditional state sequences of the initial se-
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mantics are approximated by means of an LTL formulas representing program properties.

Intuitively, a conditional state sequence is abstracted with the most precise formula that

the sequence satisfies. Then, as in the case of abstract sequences, we can apply abstract

diagnosis to obtain a fully-automatic verification method that checks if a tccp program

satisfies the given formula. This method intuitively consists in viewing a tccp program

P as a formula transformer and thus, in order to decide the validity of φ, we just have

to check if the P -transformation of φ implies φ. The transformation has a cost which is

linear in the program’s size, and thus the computational cost of the whole method is due

to the check of the implication.

In order to make the method effective, such check must be decidable, thus we have

shown how we can instantiate the method to a sublogic (the restricted-negation fragment

of CLTL presented in (Valencia 2005)) where the implication is decidable and, thus, the

verification process can automatically be done. In this way, we can express most of the

properties of tccp agents (including the non-monotonic ones) without running into the

practical problems of dealing with logical negation and exploiting for our purposes the

decidability results shown in (Valencia 2005).

With our proposal, we can easily specify a possible intervention coming from a sur-

rounding environment simply by an LTL formula. With model checking, this needs to be

done by simulating such environment in software with an additional set of declarations.

This approach has all the advantages of the first abstract diagnosis instance for tccp

(Comini et al. 2011). By choosing a suitable fragment of LTL logic, where this implica-

tion is decidable, one can automatically detect the errors in the program. Furthermore,

differently from the approach presented in (Valencia 2005), we do not need to restrict

the language to the locally-independent fragment since our semantics is able to deal with

the full language.

5 Open issues and expected achievements

Since we have achieved many of the research goals of my thesis, the most important

open issue is to demonstrate the effectiveness of our approach also in practice. Thus, we

will certainly implement the proposed abstract diagnosis methods, in order to be able

to compare with other tools. In fact, we are convinced that our approach can be an

alternative or complementary technique to model checking.

We also plan to explore other instances of the method based on logics for which decision

procedures or (semi)automatic tools exists, in order to express and verify more complex

properties of concurrent and reactive systems.

Our verification framework can also be immediately adapted to other concurrent (non-

monotonic) languages (like tcc and ntcc) once it has been developed a suitable fully

abstract semantics for them.
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