
Towards an Effective Decision Procedure for
LTL formulas with Constraints

Marco Comini1, Laura Titolo1, and Alicia Villanueva2 ⋆

1 DIMI, Università degli Studi di Udine,
{marco.comini,laura.titolo}@uniud.it

2 DSIC, Universitat Politècnica de València
villanue@dsic.upv.es

Abstract. This paper presents an ongoing work that is part of a more
wide-ranging project whose final scope is to define a method to validate
LTL formulas w.r.t. a program written in the timed concurrent constraint
language tccp. tccp is a logic concurrent constraint language based on the
concurrent constraint paradigm of Saraswat, thus notions such as non-
determinism, dealing with partial information in states and the mono-
tonic evolution of the information are inherent to tccp processes.
In order to check an LTL property for a process, our approach lays on
the abstract diagnosis technique. The concluding step of this technique
needs to check the validity of an LTL formula (with constraints) in an
effective way.
In this paper, we present a decision method for the validity of temporal
logic formulas (with constraints) built by our abstract diagnosis tech-
nique.

1 Introduction

Modeling and verifying concurrent systems by hand can be really complicated.
Thus, the development of automatic formal methods is essential. One of the most
known techniques for formal verification is model checking, that was originally
introduced in [3,15] to automatically check if a finite-state system satisfies a
given property. It consisted in an exhaustive analysis of the state-space of the
system, therefore, the state-explosion problem was its main drawback. We are
interested in an alternative way of validating a linear temporal formula φ w.r.t.
a program P which does not require to build any model at all.

The ccp paradigm is different from other programming paradigms mainly due
to the notion of store-as-constraint that replaces the classical store-as-valuation
model. With this notion, programs can deal with partial information by using an
underlying constraint system that handles constraints on variables. Within this
family, [6] introduced tccp by adding to the original ccp model the notion of time

⋆ This work has been partially supported by the eu (feder) and the Spanish
mec/micinn, ref. tin 2010-21062-c02-0, and by Generalitat Valenciana, ref. prom-
eteo2011/052.



and the ability to capture the absence of information. With these features, one
can specify behaviors typical of reactive systems such as timeouts or preemption
actions. All these features make tccp a suitable high-level language to model
concurrent reactive systems.

As already said, our final goal is to define a method that avoids the need to
build the model of a system in order to check the validity of some temporal prop-
erty. Our proposal consists in an extension of the abstract diagnosis technique
[5] where the abstract domain is formed by LTL formulas. The final step of our
approach consists in checking whether a given formula, built from the program
(abstract) semantics and the specification, is valid. By choosing an appropriate
instance of the general framework, the resulting formula belongs to a fragment
of an LTL logic with constraints (meaning that the logic is parametric w.r.t. a
constraint system) that is decidable [17].

In this work, we present a decision procedure to check the validity of such
formulas. As we show through this paper, the considered logic has some differ-
ences w.r.t. the classic LTL logic due to the constraint nature and to the fact
that models for tccp programs have some special characteristics (inherited from
the ccp paradigm).

The rest of the paper is organized as follows. In Section 2, we introduce
the tccp language. The particularities of the language affect the definition of the
decision procedure. Then, Section 3 defines the constraint system linear temporal
logic. We give the intuition of the abstract diagnosis technique in Section 4. We
do not provide all the details of the technique since they are beyond the scope of
this paper. Our decision method is described in Section 5 and, finally, Section 6
concludes.

2 The small-step operational behavior of the tccp
language

The tccp language [6] is particularly suitable to specify both reactive and time
critical systems. As the other languages of the ccp paradigm [16], it is parametric
w.r.t. a cylindric constraint system which handles the data information of the
program in terms of constraints. The computation progresses as the concurrent
and asynchronous activity of several agents that can (monotonically) accumu-
late information in a store, or query some information from it. Briefly, a cylindric
constraint system3 is an algebraic structure C = ⟨C,⪯,⊗, true, false,Var , ∃̃⟩ com-
posed of a set of constraints C such that (C, ⪯) is a complete algebraic lattice
where ⊗ is the lub operator and false and true are respectively the greatest and
the least element of C; Var is a denumerable set of variables and ∃̃ existentially
quantifies variables over constraints. The entailment ⊢ is the inverse of order ⪯.

3 See [6,16] for more details on cylindric constraint systems.



Given a cylindric constraint system C and a set of process symbols Π, the
syntax of agents is given by the grammar:

A ∶∶= skip ∣ tell(c) ∣ A ∥ A ∣ ∃xA ∣
n

∑
i=1

ask(ci)→ A ∣ now c then A else A ∣ p(x⃗)

where c, c1, . . . , cn are finite constraints in C; p/m ∈ Π, x ∈ Var and x⃗ ∈ Var ×
⋅ ⋅ ⋅ ×Var . A tccp program P is an object of the form D .A, where A is an agent,
called initial agent, and D is a set of process declarations of the form p(x⃗) ∶− A
(for an agent A), where x⃗ denotes a generic tuple of variables.

The notion of time is introduced by defining a discrete and global clock. The
ask, tell and process call agents take one time-unit to be executed.

Intuitively, the skip agent represents the successful termination of the agent
computation. The tell(c) agent adds the constraint c to the current store and
stops. It takes one time-unit, thus the constraint c is visible to other agents from
the following time instant. The store is updated by means of the ⊗ operator of
the constraint system. The choice agent ∑ni=1 ask(ci)→ Ai consults the store and
non-deterministically executes (at the following time instant) one of the agents
Ai whose corresponding guard ci holds in the current store; otherwise, if no guard
is satisfied by the store, the agent suspends. The agent now c thenA1 elseA2

behaves in the current time instant like A1 (respectively A2) if c is (respectively
is not) satisfied by the store. The satisfaction is checked by using the ⊢ operator
of the constraint system. Note that this agent can process negative information:
it can capture when some information is not present in the store since the agent
A2 is executed both when ¬c is satisfied, but also when neither c nor ¬c are
satisfied. A1 ∥ A2 models the parallel composition of A1 and A2 in terms of
maximal parallelism (in contrast to the interleaving approach of ccp), i.e., all
the enabled agents of A1 and A2 are executed at the same time. The agent ∃xA
is used to make variable x local to A. To this end, it uses the ∃̃ operator of
the constraint system. Finally, the agent p(x⃗) takes from D a declaration of the
form p(x⃗) ∶− A and executes A at the following time instant. For the sake of
simplicity, we assume that the set D of declarations is closed w.r.t. parameter
names.

The operational semantics of tccp is formally described by a transition system
T = (Conf ,→). Configurations in Conf are pairs ⟨A, c⟩ representing the agent
to be executed (A) and the current global store (c). The transition relation
→ models the passage of one time unit. For more details on the operational
semantics of the language, the reader can consult [6].

The small-step behavior of a tccp program D.A is formed by a set of traces
in Cω representing how the global constraint store evolves at each time instant:

BssJD.AK ∶={c0 ⋅ c1⋯cn ⋯ cn ⋯ ∣ ⟨A, c0⟩→ ⟨A1, c1⟩→ . . .→ ⟨An, cn⟩ /→}∪
{c0 ⋅ c1⋯ci⋯ ∣ ⟨A, c0⟩→ ⟨A1, c1⟩→ . . .→ ⟨Ai, ci⟩→ . . .}

The following program example is used in Section 4 to illustrate our abstract
diagnosis technique for LTL formulas.



Example 1. The program consists of a single process declaration D ∶= {p(y) ∶−
A} where the body of the process is defined as

A ∶= ∃x (now y = 1 then (tell(x = 5) ∥ p(y)) else tell(y = 1))

Intuitively, variable x is defined local to the process p(y). This process con-
strains variable x to the value 5 in the local store provided that y = 1 is entailed
by the current constraint store. In such a case, it also recursively calls itself. If
y = 1 does not hold in the current state, then it is ensured that it will hold at
the following time instant (by means of the tell agent).

If we run the program with initial store y = 1, its behavior is represented by
the trace y = 1 ⋅ (y = 1 ∧ x = 5) ⋯ (y = 1 ∧ x = 5) ⋯. We note that when the
program ends, the last store is infinitely replicated (so all traces are infinite).
Let us now consider the case when the initial store does not entail the guard in
the conditional agent: if we run the program with initial store y > 0, then the
program generates the trace y > 0 ⋅ y = 1 ⋯ y = 1 ⋯, where y = 1 is added at the
second time instant.

3 Constraint System Linear Temporal Logic

In this section, we define a variation of the classical Linear Temporal Logic [13].
Following [14,7,8,17], the idea is to replace atomic propositions by constraints of
the underlying constraint system. This logic is the basis for the definition of the
abstract semantics needed in our abstract diagnosis technique.

Definition 1 (csLTL formulas). Given a cylindric constraint system C, c ∈ C
and x ∈ Var, formulas of the Constraint System Linear Temporal Logic over C
are defined by using the grammar:

φ ∶∶= ˙true ∣ ˙false ∣ c ∣ ¬̇φ ∣ φ ∧̇ φ ∣ ∃̇x φ ∣◯φ ∣ φ U φ.

We denote with csLTL the set of all temporal formulas over C.

The formulas ˙true, ˙false, ¬̇φ, and φ1 ∧̇ φ2 have the classical logical meaning. The
atomic formula c ∈ C states that c has to be entailed by the current store. ∃̇x φ
is the existential quantification over the set of variables Var . ◯φ states that φ
holds at the next time instant, while φ1 U φ2 states that φ2 eventually holds and
in all previous instants φ1 holds. In the sequel, we use φ1 ∨̇ φ2 as a shorthand
for ¬̇φ1 ∧̇ ¬̇φ2; φ1 →̇ φ2 for ¬̇φ1 ∨̇ φ2; ◇φ for ˙true U φ and ◻φ for ¬̇◇ ¬̇φ.
A constraint formula is an atomic formulas c or its negation ¬̇ c. Formulas of
the form ◯φ and ¬̇◯φ are called next formulas. Finally, formulas of the form
φ1 U φ2 (or ◇φ or ¬̇(◻φ)) are called eventualities.

The truth of a formula φ ∈ csLTL is defined w.r.t. a trace s ∈ Cω. As usually
done, given s = c0 ⋅c1 ⋅c2 ⋅ ⋅ ⋅ ∈ Cω, si denotes the sub-sequence ci ⋅ci+1 . . . and s(i)
denotes the i-th constraint ci.



Definition 2. For each φ,φ1, φ2 ∈ csLTL, c ∈ C and s ∈ Cω, the satisfaction
relation ⊧ is defined as:

s ⊧ ˙true and s /⊧ ˙false (3.1a)

s ⊧ c iff s(1) ⊢ c (3.1b)

s ⊧ ¬̇φ iff s /⊧ φ (3.1c)

s ⊧ φ1 ∧̇ φ2 iff s ⊧ φ1 and s ⊧ φ2 (3.1d)

s ⊧ ∃̇x φ iff exists s′ such that ∃̃x s′ = ∃̃x s and s′ ⊧ φ (3.1e)

s ⊧◯φ iff s1 ⊧ φ (3.1f)

s ⊧ φ1 U φ2 iff ∃i ≥ 1. si ⊧ φ2 and ∀j < i. sj ⊧ φ1 (3.1g)

We define JφK ∶= {s ∣ s ⊧ φ} and we say that φ is valid if and only if JφK = Cω,
and that φ is satisfiable if and only if JφK ≠ ∅.

Let us show some temporal properties that can be expressed by csLTL for-
mulas.

Example 2. The formula ◻(x > 0 →̇◯ z > 1) expresses that always in the future,
whenever x > 0 is entailed by the store, then z > 1 is entailed at the following
time instant.

The formula ∃̇x(◇(y = 1 ∧̇ x = 5)) expresses that, eventually in the future,
y = 1 is entailed by the global constraint store and, at the same time instant,
there exists a local variable x such that x = 5 is entailed by the local constraint
store.

4 Abstract diagnosis of temporal properties

Abstract diagnosis is a semantic based method to identify bugs in programs.
It was originally defined for logic programming [4] and then extended to other
paradigms [1,2,9,5]. This technique is based on the definition of an abstract se-
mantics for the program which must be a sound approximation of its behavior.
Then, given an abstract specification S of the expected behavior of the program,
the abstract diagnosis technique automatically detects the errors in the program
by checking if the result of one computation of the semantics evaluation func-
tion (where the procedure calls are interpreted over S) is “contained” in the
specification itself.

A first approach to the abstract diagnosis of tccp was presented in [5] by using
as specifications sets of abstract traces. The main drawback of that proposal was
that specifications were given in terms of traces, thus they can be tedious to
write. In order to overcome that problem, we have defined an abstract semantics
(a semantics evaluation function) in terms of csLTL formulas. This allows us
to express the intended behavior in a more compact way, by means of a csLTL
formula.

The semantics evaluation function AJAK, given an agent A and an interpre-
tation I (for the process symbols of A), builds a csLTL formula representing a



correct approximation of the small-step behavior of A.4 The semantics of the
declarations is given in terms of the fixpoint of a semantics evaluation function
DJDK which associates to each procedure declaration p(x⃗) the logic disjunction
of the abstract semantics of every agent A such that p(x⃗) ∶− A belongs to the
declaration D (i.e., DJDKI(p(x⃗)) ∶= ⋁̇p(x⃗)∶−A∈D AJAKI).

The abstract diagnosis technique determines exactly the “originating” symp-
toms and, in the case of incorrectness, the faulty process declaration in the
program. This is captured by the definitions of abstractly incorrect process dec-
laration and abstract uncovered element. Informally, a process declaration D is
abstractly incorrect if it derives a wrong abstract element φt ∈ csLTL from the
intended semantics S. Dually, φt is uncovered if the declarations cannot derive
it from the intended semantics.

We show here the main result of abstract diagnosis, which determines the
form of formulas that we need to check for validity.

Theorem 1. Consider a set of declarations D and an abstract specification S.

1. If there are no abstractly incorrect process declarations in D (i.e., DJDKS →̇
S), then D is partially correct w.r.t. S.

2. Let D be partially correct w.r.t. S. If D has abstract uncovered elements then
D is not complete.

Therefore, in order to check partial correctness of a program, it is sufficient to
check the implication DJDKS →̇ S.

Because of the approximation, it can happen that a (concretely) correct dec-
laration is abstractly incorrect. Hence, abstract incorrect declarations are in
general just a warning about a possible source of errors. However, an abstract
correct declaration cannot contain an error; therefore, no (manual) inspection is
needed for declarations which are not signalled. Moreover, it happens that all
concrete errors—that are “visible”—are detected, as they lead to an abstract
incorrectness or abstract uncovered.

Let us now illustrate how the technique works by means of a simple example.

Example 3. Assume we need to check that the program in Example 1 satisfies
that the constraint y = 1 is eventually entailed by the store. The intended speci-
fication for the process p corresponding to this property is S(p(y)) ∶=◇(y = 1).

The csLTL-semantics D for p(y) using the given specification as interpreta-
tion is

DJDKS(p(y)) = ∃̇x ((y = 1 ∧̇ ◯x = 5 ∧̇ ◯(◇ y = 1)) ∨̇ (¬̇ y = 1 ∧̇ ◯ y = 1))

Note that the resulting formula has a clear correspondence with the behavior
of the program. We have two disjuncts, one for each branch of the conditional

4 Since it may help the reader to follow the upcoming discussions, we have included in
the appendix the definition of A although we know that some operators and notation
remain undefined. Since the scope of this paper is not to convince the reader about
the correctness of that semantics, we beg him to accept it as it is.



in the body of the declaration. Moreover, since the conditional agent is in the
scope of a local variable x, both disjuncts are enclosed within an existential
quantification. The computation of the csLTL-semantics is compositional, based
on the structure of the program. The first disjunct corresponds to the case when
the guard of the conditional agent is satisfied (y = 1), thus in the following time
instant two things happen: x = 5 is added to the store, thus x = 5 is entailed, and
also is entailed the interpretation for the process call p because a recursive call is
run. This illustrates how the intended specification is used as the interpretation
of process calls.

Now, following Theorem 1, to check whether the process p(y) satisfies the
property, it is sufficient to show that the csLTL formula DJDKS(p(y)) →̇ S(p(y))
is valid.

5 An automatic decision procedure for csLTL

In order to make our abstract diagnosis approach effective, we need to define
an automatic decision procedure to check the validity of the csLTL formulas
that show up when checking a property. In particular, we need to handle csLTL
formulas of the form ψ →̇ φ, where ψ corresponds to the computed approximated
behavior of the program, and φ is the abstract intended behavior of the process.

Formally, φ and ψ are defined by the following grammars.

φ ∶= ˙true ∣ ˙false ∣ c ∣ ¬̇φ ∣ φ ∧̇ φ ∣◯φ ∣ φ U φ
ψ ∶= c ∣ ¬̇ c ∣◯ψ ∣ ψ1 ∧̇ ψ2 ∣ ψ1 ∨̇ ψ2 ∣ ∃̇x ψ ∣◯φ

Due to the definition of the abstract semantics (see in particular the definition
of A in appendix), ψ cannot be an arbitrary csLTL formula. We know that the
until operator can occur only in the scope of a next operator (it can show up
only thanks to the intended specification in a process call, whose execution has
a delay of one time instant). It also happens that negation can be applied to
arbitrary formulas if they are within a next operator, otherwise it can be applied
only to constraints.

We impose a restriction on the specification φ: we do not allow the use
of existential quantifications. Actually, this restriction is quite natural in our
context since, in general, we are interested in proving properties related to the
visible behavior of the program, not to the local variables. In contrast, negation
can be applied to any formula φ (not only to constraints).

In this section, we extend the tableau construction for Propositional LTL
(PLTL) of [10,12] in order to deal with our formulas. We need to adapt the
method to our context due to three issues:

1. The structures on which the logic is interpreted are different. In our case,
traces (sequences of states) are monotonic, meaning that the information in
each state always increases.

2. The logic itself is a bit different from PLTL since propositions are replaced
by constraints in C.



3. We have to handle existential quantification over variables of the underlying
constraint system. This does not mean that we are dealing with a first-order
logic as will become clear later

In the following, we first present the basic rules that are used during the
construction of the tree associated to the tableau. Then we present the algorithm
that implements the process of construction of the tree.

5.1 Basic rules for a csLTL tableau

Classic tableux algorithms are based on the systematic construction of a graph
which is used to check the satisfiability of the formula. In [10,12], the authors
present an algorithm that does not need to use auxiliary structures such as graphs
to decide about the satisfaction of the formula, and this makes this approach
more suitable for automatization.

A tableu procedure is defined by means of rules that build a tree whose
nodes are labeled with sets of formulas. If all branches of the tree are closed,
then the formula has no models. Otherwise, we can obtain a model that satisfies
the formula from the open branches. Let us introduce the basic rules for the
csLTL case. As usual, we present just the minimal set of rules.

Given a set of formulas Γ . Conjunctions are α-formulas and disjunctions
β-formulas. Fig. 1 presents the rules for α− and β−formulas.

α α1

R1 ¬̇ ¬̇φ φ

R2 φ1 ∧̇ φ2 φ1, φ2

β β1 β2
R3 ¬̇(φ1 ∧̇ φ2) ¬̇φ1 ¬̇φ2

R4 ¬̇(φ1 U φ2) ¬̇φ1, ¬̇φ2 φ1, ¬̇φ2, ¬̇◯(φ1 U φ2)

R5 φ1 U φ2 φ2 φ1, ¬̇φ2,◯(φ1 U φ2)

R6 Γ,φ1 U φ2 Γ,φ2 Γ,φ1, ¬̇φ2,◯((Γ
∗
∧̇ φ1) U φ2)

Fig. 1. α- and β-formulas rules

Tables are interpreted as follows. Each row in a table represents a rule. Each
time that an α−rule is applied to a node of the tree, a formula of the node match-
ing the pattern in column α is replaced in a child node by the corresponding α1.
For the β-rules, two children nodes are generated, one for each column β1 and
β2.

Almost all the rules are standard. However, Rule R6 uses the so-called context
Γ ∗, which is defined as Γ ∗ ∶= ⋁̇γ∈Γ ¬̇γ. The use of contexts is the mechanism to
detect the loops that allows one to close branches with eventually formulas. This
kind of rules were first introduced in [11]. The idea is that, by using contexts,
loops where no formula changes are discarded to close a branch.

Note that there is no rule defined for the ◯ operator. In fact, the next(Φ)
function transforms a set of formulas Φ into another: next(Φ) ∶= {φ ∣ ◯φ ∈
Φ} ∪ {¬̇φ ∣ ¬̇◯φ ∈ Φ} ∪ {c ∣ c ∈ Φ, c ∈ C}. This operator is different from the



corresponding one of PLTL in that, in addition to keeping the internal formula
of the next formulas, it also passes the constraints that are entailed at the cur-
rent time instant to the following one. This makes sense for tccp computations
since, as already mentioned, the store in a computation is monotonic, thus no
information can be removed and it happens that, always, c implies ◯ c.

A second main difference w.r.t. the PLTL case regards the existential quan-
tification. To handle it, we define the hide(X,φ) operator that, given X ⊆ Var
and φ ∈ csLTL, removes from φ all the information regarding the variables in X.
For instance, hide({x},◯(x = 4 ∧̇ y < x)) =◯(y < 4)). In the following, we abuse
of notation by writing hide(x,φ) when X is the singleton {x}.

5.2 Construction of the csLTL tableau

In this section, we present the algorithm than builds the tableau for our formulas
following the ideas of [10,12].

Definition 3 (csLTL tableau). A csLTL tableau T is a tree where each node n
is labeled with a set of csLTL formulas F(n). The root is labeled with the singleton
set {φ} for the formula φ whose satisfiability/validity is needed to check, and the
children of a node are obtained by applying the basic rules of Subsection 5.1.

Definition 4. A node in the tableau is inconsistent if it contains

– a couple of formulas φ, ¬̇φ, or
– the formula ˙false, or
– a couple of constraint formulas c, ¬̇ c′ such that c ⊢ c′.

The last condition for inconsistence of a node is particular to the ccp con-
text. Since we are dealing with constraints that model partial information, it is
possible that we have an implicit inconsistence, in the sense that we need the
entailment relation to detect it.

The algorithm marks nodes when they cannot be further processed. In par-
ticular, a node is marked when it is inconsistent (closed) or when it contains just
constraint formulas (open). Nodes with no children are leaf nodes.

Let us first introduce the notion of fulfilled eventuality formula in a path of
the tableau. This notion characterizes the satisfaction of the eventuality formulas
and allows us to close nodes when they contain such kind of formulas.

Definition 5. Let T be a tableau and p = n1, n2, . . . , nj a path in T . Any even-
tuality φ1 U φ2 ∈ F(ni), with 1 ≤ i ≤ j, is fulfilled in p if there exists a k such
that i ≤ k ≤ j and φ2 ∈ F(nk).

Intuitively, the formula is fulfilled in the path if we can reach (following the
path) a node where φ2 is true.

When dealing with eventualities, to determine which rule R5 or R6 has to
be applied in a node, it is necessary to distinguish eventualities. The idea is
to mark which is the eventuality that is being unfolded in the path. Then, the



rule R6 is applied only to distinguished eventualities; in any other case, the rule
R5 is used. If a node does not contain any distinguished eventuality, then the
algorithm distinguishes one of them and rule R6 is chosen to be applied to it.
Each node of the tableau has at most one distinguished eventuality.

Now we are ready to show how the tableau is built. The algorithm repeatedly
selects an unmarked leaf node l labelled with the set of formulas F(l) and applies,
in order, one of the points shown below.

1. If l is an inconsistent node, then mark it as closed (×).
2. If F(l) is a set of constraint formulas, mark l as open (⊙).
3. If F(l) = F(l′) for l′ ancestor of l, take the oldest ancestor l′′ of l that is

labeled with F(l) and check if each eventuality in the path between l′′ and
l is fulfilled in such path. If they are all fulfilled, then mark l as open (⊙).

4. If none of the points above applied, choose φ ∈ F(l) such that φ is not a next
formula. Then,
– if φ is an α-formula (let φ = α), create a new node l′ as a child of l and

label it as F(l′) = (F(l) ∖ {α}) ∪ α1 by using the corresponding rule in
Fig. 1,

– if φ is a β-formula (let φ = β), create two new nodes l′ and l′′ as children of
l and label them as F(l′) = (F(l)∖{β})∪β1 and F(l′′) = (F(l)∖{β})∪β2
by using the corresponding rule in Fig. 1. Moreover, if β is an eventuality,
we have three possible cases:
● if β is the distinguished eventuality in F(l), then apply Rule R6 to
β and distinguish the formula inside the next formula in β2;

● if β is not distinguished, but there is another distinguished formula,
then apply Rule R5 to β and maintain the existing distinguished
formula in β1 and β2;

● otherwise, distinguish β and apply Rule R6 to β and distinguish the
formula inside the next formula in β2;

– if φ is an ∃-formula (φ = ∃̇x φ′), then check if the formula hide(Var ∖
{x}, φ′) is satisfiable (by constructing another csLTL tableau). If it is
satisfiable, then create a new node l′ as a child of l and label it as

F(l′) = (F(l) ∖ {φ}) ∪ {hide(x,φ′)}, otherwise, mark l as closed (×).
5. If F(l) is formed only by constraint formulas and next formulas, apply the

next operator: create a new node l′ as child of l and label it as F(l′) =
next(F(l)).

Each branch of the tree can be seen as divided into stages, where each stage
is a set of consecutive nodes which are obtained by applying α− or β−rules.
When the next rule is applied, we move from one stage to the following one in
the branch. Moreover, when the hiding rule is applied, an auxiliary tableau is
built for a given (smaller) formula of the node. The case for the hiding rule is
particular to the ccp context. Since models of formulas are traces that belong to
the semantics of a tccp program, the idea is to try to determine whether there
exists a model for the local information x. In that case, we know that we can
find a trace that coincides with the original one but for the information x, which
means that the whole formula is true.



This strategy for the existential quantification works under the assumption
that, if we have a conditional agent nested within a hiding agent (in a single
time instant), then the variable of the existential quantification does not appear
in the guard of the conditional agent. Actually, it holds that for that kind of
programs there exists an equivalent one in which this situation does not happen,
thus this is not a real limitation.

The construction terminates when every leaf is marked. A tableau whose
construction has terminated is called complete. A complete tableu with all the
leaves marked × is said to be closed, otherwise it is open.

A strategy for the construction of the tableau is called fair if an open branch
does not contain an unfulfilled eventuality that has never been distinguished.
A fair strategy makes that the construction always terminates since the con-
straint formulas, the possible context Γ , and (by induction) the possible auxil-
iary tableaux for the elimination of the existential quantification which can occur
in the construction, are finite. This result is similar to the corresponding result
for the PLTL tableau.

We aim to use the classical results of satisfiability (to be proven in our case)
to apply the algorithm to the final step of our abstract diagnosis technique. In
particular, we know that

– if there exists a closed tableau for φ ∈ csLTL then φ is unsatisfiable, and
– if there exists an open tableau for φ ∈ csLTL then φ is satisfiable.

Since we are interested in checking the validity of a formula of the form φ →̇ ψ,
we build the tableau for its negation and check whether the resulting tableau
is closed. That means that the negation is unsatisfiable, thus our implication is
valid. In other words, we build the tableau for the initial formula φ ∧̇ ¬̇ψ. Then,
we check if the resulting tableau is closed.

Example 4. Consider the formula of our guiding example (introduced in Exam-
ple 3) ∃̇x φ →̇◇(y = 1), where φ = (y = 1 ∧̇ ◯x = 5 ∧̇ ◯(◇ y = 1)) ∨̇ (¬̇ y = 1 ∧̇ ◯ y = 1).
The tableau in Fig. 2, with F(root) = ∃̇x φ ∧̇ ¬̇◇(y = 1) shows its validity. Arrows
labeled with α and β correspond to the application of α and β rules, respectively;
arrows labeled with X represent the application of the next operator. Finally,
arrows labeled with ∃ correspond to the elimination of the existential quantifi-
cation for the formula ∃̇x φ.

In the example, the first step uses the rule for the conjunction. Then, the
second step involves the construction of an auxiliary tableau (shown in Fig. 3)
for checking the satisfiability of hide(Var ∖ {x}, φ) =◯x = 5. Since the auxiliary
tableau is open, the formula representing the local information is satisfiable,
which means that there exists a model for it, thus it exists a trace (that we do
not compute) that makes the whole formula true.

The third node of Fig. 2 corresponds to the descendent of the existential
quantification, being (y = 1 ∧̇ ◯(◇ y = 1)) ∨̇ (¬̇ y = 1 ∧̇ ◯ y = 1) the formula re-
sulting by removing the information about the local variable. This formula is
then selected for a β step (disjunction). The branch on the left is closed after
two steps since y = 1 and ¬̇ y = 1 both belong to the node labeling.



∃̇x φ ∧̇ ◻(¬̇ y = 1)

α

∃̇x φ,◻(¬̇ y = 1)

∃

(y = 1 ∧̇ ◯(◇ y = 1)) ∨̇ (¬̇ y = 1 ∧̇ ◯ y = 1),◻(¬̇ y = 1)

β

y = 1 ∧̇ ◯(◇ y = 1),◻(¬̇ y = 1)

α

y = 1,◯(◇ y = 1),◻(¬̇ y = 1)

α

y = 1,◯(◇ y = 1), ¬̇ y = 1,◯◻(¬̇ y = 1)
×

¬̇ y = 1 ∧̇ ◯ y = 1,◻(¬̇ y = 1)

α

¬̇ y = 1,◯ y = 1,◻(¬̇ y = 1)

α

¬̇ y = 1,◯ y = 1,◯(◻(¬̇ y = 1))

X

y = 1,◻(¬̇ y = 1)

α

y = 1, ¬̇ y = 1,◯(◻(¬̇ y = 1))
×

Fig. 2. Tableau for ∃̇x φ →̇◇ y = 1 of Example 4.

◯x = 5

X

x = 5
⊙

Fig. 3. Tableau for ◯x = 5 of Example 4.

The branch on the right first flattens the conjunction and then applies the
next rule. Note that the negation of a constraint is not kept in the following time
instant. We recall that negation means “not entailment” (in contrast to meaning
that the contrary is true), thus, in the future the constraint could be entailed.

Since also this second branch is closed, we know that the formula is not
satisfiable, thus our implication is valid.

In the context of abstract diagnosis, this proves that the program is abstractly
correct w.r.t. the LTL specification.

Example 5. Now, suppose that we want to check, for the program introduced
in Example 1, that the constraint y = 1 is always entailed by the store. The
corresponding specification is S ′(p(y)) = ◻(y = 1).

The csLTL-semantics D for p(y) using the given specification as interpreta-
tion is given by the formula ∃̇x ((y = 1 ∧̇ ◯x = 5 ∧̇ ◯(◻ y = 1)) ∨̇ (¬̇ y = 1 ∧̇ ◯ y = 1)).



Let us abbreviate the body of the existential quantification as φ′. To check
whether the process p(y) is correct w.r.t. the property, we have to show that
∃̇x φ′ →̇ ◻(y = 1) is valid.

The tableau in Fig. 4 shows the satisfiability of the formula ∃̇x φ′ ∧̇ ◇(¬̇ y = 1).
This means that its negation, ∃̇x φ′ →̇ ◻(y = 1), is not valid. In the context of
abstract diagnosis, although the formula is not satisfied by the program, because
of the loss of precision due to the approximation, this is only a warning about
the possible incorrectness of the program w.r.t. the LTL specification.

Notice that the second step involves the construction of the same auxiliary
tableau of Example 4 (shown in Fig. 3) for checking the satisfiability of hide(Var∖
{x}, φ′) = ◯x = 5. Furthermore, Rule R6 is applied twice to deal with the
distinguished eventuality ◇(¬̇ y = 1).

∃̇x φ
′
∧̇ ◇(¬̇ y = 1)

α

∃̇x φ,◇(¬̇ y = 1)

∃

(y = 1 ∧̇ ◯(◻ y = 1)) ∨̇ (¬̇ y = 1 ∧̇ ◯ y = 1),◇(¬̇ y = 1)

β

y = 1 ∧̇ ◯(◻ y = 1),◇(¬̇ y = 1)

α

y = 1,◯(◻ y = 1),◇(¬̇ y = 1)

y = 1,◯(◻ y = 1), ¬̇ y = 1
×

y = 1,◯(◻ y = 1),

(¬̇ y = 1 ∨̇ ¬̇◯(◻ y = 1)) U(¬̇ y = 1)

¬̇ y = 1 ∧̇ ◯ y = 1,◇(¬̇ y = 1)

α

¬̇ y = 1,◯ y = 1,◇(¬̇ y = 1)

β

¬̇ y = 1,◯ y = 1

X

y = 1
⊙

¬̇ y = 1,◯ y = 1,

◯(y = 1 ∨̇ ¬̇◯ y = 1) U(¬̇ y = 1)

Fig. 4. Tableau for ∃̇x φ
′
→̇ ◻ y = 1 of Example 5

6 Conclusions and Future Work

In this paper, we have introduced a decision procedure for a class of csLTL
formulas. csLTL is a linear temporal logic that replaces propositional formulas
by constraint formulas, thus in order to determine the validity of a formula



with no temporal constructs, it uses the entailment relation of the underlying
constraint system.

The decision procedure is an adaptation of the tableau defined in [10,12].
The main differences of our algorithm w.r.t. the propositional case are due to
the constraint nature of the behavior of tccp.

This decision procedure is the last step of a method to validate LTL formulas
for tccp programs. We still need to formally prove the correctness result of our
algorithm. This is ongoing work. Once we have these results, we would have a
completely automatic abstract diagnosis instance for a subset of LTL formulas.

As future work, we plan to implement this algorithm and integrate it with
the verification method. We also plan to explore other instances of the method
based on logics for which decision procedures or (semi)automatic tools exists.
If we were able to find a decision procedure for a more expressive fragment of
the logic, then we could define a more precise abstract semantics and accurate
specifications.

References

1. M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and S. Lucas. Abstract Diagnosis
of Functional Programs. In M. Leuschel, editor, Logic Based Program Synthesis and
Transformation – 12th International Workshop, LOPSTR 2002, Revised Selected
Papers, volume 2664 of Lecture Notes in Computer Science, pages 1–16, Berlin,
2003. Springer-Verlag.

2. G. Bacci and M. Comini. Abstract Diagnosis of First Order Functional Logic Pro-
grams. In M. Alpuente, editor, Logic-based Program Synthesis and Transformation,
20th International Symposium, volume 6564 of Lecture Notes in Computer Science,
pages 215–233, Berlin, 2011. Springer-Verlag.

3. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In D. Kozen, editor, Logic of Programs,
volume 131 of Lecture Notes in Computer Science, pages 52–71. Springer, 1981.

4. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract Diagnosis. Journal of
Logic Programming, 39(1-3):43–93, 1999.

5. M. Comini, L. Titolo, and A. Villanueva. Abstract Diagnosis for Timed Concurrent
Constraint programs. Theory and Practice of Logic Programming, 11(4-5):487–502,
2011.

6. F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Timed Concurrent Constraint
Language. Information and Computation, 161(1):45–83, 2000.

7. F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Temporal Logic for Reasoning about
Timed Concurrent Constraint Programs. In TIME ’01: Proceedings of the Eighth
International Symposium on Temporal Representation and Reasoning (TIME’01),
page 227, Washington, DC, USA, 2001. IEEE Computer Society.

8. F. S. de Boer, M. Gabbrielli, and M. C. Meo. Proving correctness of Timed Con-
current Constraint Programs. CoRR, cs.LO/0208042, 2002.

9. M. Falaschi, C. Olarte, C. Palamidessi, and F. D. Valencia. Declarative Diagnosis
of Temporal Concurrent Constraint Programs. In V. Dahl and I. Niemelä, editors,
Logic Programming, 23rd International Conference, ICLP 2007, Proceedings, vol-
ume 4670 of Lecture Notes in Computer Science, pages 271–285. Springer-Verlag,
2007.



10. J. Gaintzarain, M. Hermo, P. Lucio, and M. Navarro. Systematic semantic tableaux
for pltl. Electronic Notes in Theoretical Computer Science, 206:59–73, 2008.

11. J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, and F. Orejas. A cut-free and
invariant-free sequent calculus for pltl. In J. Duparc and T. A. Henzinger, editors,
CSL, volume 4646 of Lecture Notes in Computer Science, pages 481–495. Springer,
2007.

12. J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, and F. Orejas. Dual systems of
tableaux and sequents for pltl. The Journal of Logic and Algebraic Programming,
78(8):701–722, 2009.

13. Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems -
specification. Springer, 1992.

14. C. Palamidessi and F. D. Valencia. A Temporal Concurrent Constraint Program-
ming Calculus. In 7th International Conference on Principles and Practice of Con-
straint Programming (CP’01), volume 2239 of Lecture Notes in Computer Science,
pages 302–316. Springer, 2001.

15. J. P. Queille and J. Sifakis. Specification and verification of concurrent systems
in CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors, Symposium on
Programming, volume 137 of Lecture Notes in Computer Science, pages 337–351.
Springer, 1982.

16. V. A. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge,
Mass., 1993.

17. F. D. Valencia. Decidability of infinite-state timed ccp processes and first-order
ltl. Theoretical Computer Science, 330(3):577–607, 2005.

A Abstract semantics evaluation function for agents

The following function is the core definition for the correct abstract semantics
for tccp in the domain of csLTL formulas. Actually, this version of the semantics
is an instance of the general framework in which we are restricted to a decidable
subset of the csLTL logic. For this reason, the semantics for the choice agent is
a correct, but not precise, semantics of the agent’s behavior.

Definition 6 (csLTL abstract Semantics).

Given A ∈ AΠC and I ∈ IF, we define the csLTL semantics evaluation AJAKI
by structural induction as follows.

AJskipKI ∶= true (A.1a)

AJtell(c)KI ∶=◯ c (A.1b)

AJ
n

∑
i=1

ask(ci)→ AiKI ∶= ⋁̇
n

i=1 (ci ∧̇ ◯AJAiKI) ∨̇ (⋀̇
n

i=1 ¬̇ ci) (A.1c)

AJnow c then A1 else A2KI ∶= (c ∧̇ AJA1KI) ∨̇ (¬̇ c ∧̇ AJA2KI) (A.1d)

AJA1 ∥ A2KI ∶= AJA1KI ∧̇ AJA2KI (A.1e)

AJ∃xAKI ∶= ∃̇xAJAKI (A.1f)

AJp(x⃗)KI ∶=◯I(p(x⃗)) (A.1g)



Let D ∈ DΠC . We define the (monotonic) immediate consequence operator DJDK∶ IF →
IF as

DJDKI(p(x⃗)) ∶= ⋁̇ {AJAKI ∣p(x⃗) ∶− A ∈D}


	Towards an Effective Decision Procedure for LTL formulas with Constraints

