
Under consideration for publication in Theory and Practice of Logic Programming 1

Abstract Diagnosis for tccp using a Linear
Temporal Logic

MARCO COMINI, LAURA TITOLO
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Abstract

Automatic techniques for program verification usually suffer the well-known state explosion
problem. Most of the classical approaches are based on browsing the structure of some form of
model (which represents the behavior of the program) to check if a given specification is valid.
This implies that a part of the model has to be built, and sometimes the needed fragment is
quite huge.

In this work, we provide an alternative automatic decision method to check whether a given
property, specified in a linear temporal logic, is valid w.r.t. a tccp program. Our proposal (based
on abstract interpretation techniques) does not require to build any model at all. Our results
guarantee correctness but, as usual when using an abstract semantics, completeness is lost.

KEYWORDS: concurrent constraint paradigm, linear temporal logic, abstract diagnosis, deci-
sion procedures, program verification

1 Introduction

The Concurrent Constraint Paradigm (ccp, (Saraswat 1989)) is a simple, logic model

which is different from other (concurrent) programming paradigms mainly due to the

notion of store-as-constraint that replaces the classical store-as-valuation model. Within

this family, (de Boer et al. 2000) introduced the Timed Concurrent Constraint Language

(tccp in short) by adding to the original ccp model the notion of time and the ability to

capture the absence of information. With these features, one can specify behaviors typical

of reactive systems such as timeouts or preemption actions. It is well-known that verifying

concurrent systems by hand can be an extremely hard task. Thus, the development of

automatic formal methods is essential. One of the most known automatic techniques

for formal verification is model checking (Clarke and Emerson 1982; Queille and Sifakis

1982). It consists in an exhaustive analysis of a finite-state system to check the satisfaction
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2010-21062-c02-0, and by Generalitat Valenciana, ref. prometeo2011/052.



of a given property; thus the state-explosion problem is its main drawback and, for this

reason, many proposals in the literature try to mitigate it.

All the proposals of model checking have in common that a part of the model of the

(target) program has to be built, and sometimes the needed fragment is quite huge. In this

work, we propose a completely different approach to the formal verification of temporal

(LTL) properties of concurrent (reactive) systems specified in tccp. We formalize a method

to validate a specification of the expected behavior of a tccp program P , expressed by a

linear temporal formula φ, which does not require to build any model at all.

The linear temporal logic we use to express specifications, csLTL, is an adaptation of

the propositional LTL logic to the concurrent constraint framework. This logic is also

used as the basis of the abstract domain for a new (abstract) semantics for the language.

In brief, our method is an extension of abstract diagnosis for tccp (Comini et al. 2011)

where the abstract domain F is formed by csLTL formulas. We cannot use the original

abstract diagnosis framework of (Comini et al. 2011) since F is not a complete lattice.

The contributions of this work are the following:

● A new abstract semantics for tccp programs based on csLTL formulas;
● A novel and effective method to validate csLTL properties based on the ideas of

abstract diagnosis. This proposal intuitively consists in viewing P as a formula

transformer by means of an (abstract) immediate consequence operator D̂JP K which

works on csLTL formulas. Then, to decide the validity of φ, we just have to check

if D̂JP Kφ (i.e., the P -transformation of φ) implies φ;
● An automatic decision procedure for csLTL properties that makes our method ef-

fective.

With our technique we can check, for instance, that, at a railway crossing system,

each time a train is approaching, the gate is down, or that whenever a train has crossed,

the gate is up. When a property is non valid, the method identifies the buggy process

declaration. Technical results of Sections 3 and 4 can be found in (Comini et al. 2014).

2 The small-step operational behavior of the tccp language

The tccp language (de Boer et al. 2000) is particularly suitable to specify reactive and

time critical systems. As the other languages of the ccp paradigm (Saraswat 1993), it

is parametric w.r.t. a cylindric constraint system which handles the data information of

the program in terms of constraints. The computation progresses as the concurrent and

asynchronous activity of several agents that can accumulate information in a store, or

query information from it. Briefly, a cylindric constraint system1 is an algebraic structure

C = ⟨C,⪯,⊗, false, true,Var ,∃⟩ composed of a set of constraints C such that (C, ⪯) is a

complete algebraic lattice where ⊗ is the lub operator and false and true are respectively

the greatest and the least element of C; Var is a denumerable set of variables and ∃
existentially quantifies variables over constraints. The entailment ⊢ is the inverse of ⪯.

Given a cylindric constraint system C and a set of process symbols Π, the syntax of

agents is given by the grammar:

A ∶∶= skip ∣ tell(c) ∣ A ∥ A ∣ ∃xA ∣ ∑
n
i=1 ask(ci) → A ∣ now c then A else A ∣ p(x⃗)

1 See (de Boer et al. 2000; Saraswat 1993) for more details on cylindric constraint systems.
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⟨tell(c), d⟩ → ⟨skip, c⊗ d⟩
d ≠ false

⟨∑
n
i=1 ask(ci) → Ai, d⟩ → ⟨Aj , d⟩

j ∈ [1, n], d ⊢ cj , d ≠ false

⟨A, d⟩ → ⟨A′, d′⟩
⟨now c then A else B, d⟩ → ⟨A′, d′⟩

d ⊢ c ⟨A, d⟩ /→

⟨now c then A else B, d⟩ → ⟨A, d⟩
d ⊢ c, d ≠ false

⟨B, d⟩ → ⟨B′, d′⟩
⟨now c then A else B, d⟩ → ⟨B′, d′⟩

d ⊬ c ⟨B, d⟩ /→

⟨now c then A else B, d⟩ → ⟨B, d⟩
d ⊬ c

⟨A, d⟩ → ⟨A′, d′⟩ ⟨B, d⟩ → ⟨B′, c′⟩
⟨A ∥ B, d⟩ → ⟨A′ ∥ B′, d′ ⊗ c′⟩

⟨A, d⟩ → ⟨A′, d′⟩ ⟨B, d⟩ /→
⟨A ∥ B, d⟩ → ⟨A′ ∥ B, d′⟩
⟨B ∥ A, d⟩ → ⟨B ∥ A′, d′⟩

⟨A, l⊗ ∃x d⟩ → ⟨B, l
′
⟩

⟨∃lxA, d⟩ → ⟨∃l′xB, d⊗ ∃x l′⟩ ⟨p(x⃗), d⟩ → ⟨A, d⟩
p(x⃗) ∶− A ∈D, d ≠ false

Fig. 1. The transition system for tccp.4

where c, c1, . . . , cn are finite constraints in C; p/m ∈ Π and x⃗ denotes a generic tuple of

m variables. A tccp program is an object of the form D . A, where A is an agent, called

initial agent, and D is a set of process declarations of the form p(x⃗) ∶− A (for some agent

A). The notion of time is introduced by defining a discrete and global clock.

The operational semantics of tccp, defined in (de Boer et al. 2000), is formally de-

scribed by a transition system T = (Conf ,→). Configurations in Conf are pairs ⟨A, c⟩

representing the agent A to be executed in the current global store c. The transition rela-

tion → ⊆ Conf ×Conf is the least relation satisfying the rules of Figure 1. Each transition

step takes exactly one time-unit.

Example 2.1 (Guiding example) Through the paper, we use as guiding example a
part of the full specification of a railway crossing system introduced in (Alpuente et al.
2006). Let us call Dm the following tccp declaration:

master(C ,G) ∶− ∃C′,G′ ( now (C = [near ∣ ]) then
tell(C = [near ∣ C′]) ∥ tell(G = [down ∣ G′]) ∥ master(C ′,G ′)

else now (C = [out ∣ ]) then
tell(C = [out ∣ C′]) ∥ tell(G = [up ∣ G′]) ∥ master(C ′,G ′)

else master(C ,G))

Due to the monotonicity of the store, streams (written in a list-fashion way) are used

to model imperative-style variables (de Boer et al. 2000). The master process uses an

input channel C (implemented as a stream) through which it receives signals from the

environment (trains), and an output channel G through which it sends orders to a gate

process. It checks the input channel for a near signal (the guard in the first now agent),

in which case it sends (tells) the order down through G, links the future values (C ′)

of the stream C and restarts the check at the following time instant (recursive call

master(C ′,G ′)). If the near signal is not detected, then, the else branch looks for the

out signal and (if present) behaves dually to the first branch. Finally, if no signal is

detected at the current time instant (last else branch), then the process keeps checking

from the following time instant.

4 The auxiliary agent ∃lxA makes explicit the local store l of A. This auxiliary agent is linked to the
principal hiding construct by setting the initial local store to true, thus ∃xA ∶= ∃

truexA.
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In this work, we prove the correctness of our technique w.r.t. the denotational con-

crete semantics of (Comini et al. 2013a), which is fully-abstract (correct and complete)

w.r.t. the small-step operational behavior of tccp. Also csLTL is interpreted over this

denotational model. We thus introduce the most relevant aspects of such semantics.

The denotational semantics of a tccp program consists of a set of conditional (timed)

traces that represent, in a compact way, all the possible behaviors that the program can

manifest when fed with an input (initial store). Conditional traces can be seen as hypo-

thetical computations in which, for each time instant, we have a condition representing

the information that the global store has to satisfy in order to proceed to the next time

instant. Briefly, a conditional trace is a (possibly infinite) sequence t1⋯tn⋯ of conditional

states, which can be of three forms:

conditional store: a pair η ↣ c, where η is a condition and c ∈ C a store;
stuttering: the construct stutt(C), with C ⊆ C ∖ {true};
end of a process: the construct ⊠.

Intuitively, the conditional store η ↣ c means that, provided condition η is satisfied by

the current store, the computation proceeds so that in the following time instant, the

store is c. A condition η is a pair η = (η+, η−) where η+ ∈ C and η− ∈ ℘(C) are called

positive and negative condition, respectively. The positive/negative condition represents

information that a given store must/must not entail, thus they have to be consistent in

the sense that ∀c− ∈ η− η+ ⊬ c−. The stuttering construct models the suspension of the

computation when none of the guards in a non-deterministic agent is satisfied. C is the

set of guards in the non-deterministic agent. Conditional traces are monotone (i.e., for

each ti = ηi ↣ ci and tj = ηj ↣ cj such that j ≥ i, cj ⊢ ci) and consistent (i.e., each store

in a trace does not entail the negative conditions of the following conditional state).

We denote the domain of conditional trace sets as M. (M, ⊑, ⊔, ⊓, M, {ε}) is a com-

plete lattice, where M1 ⊑M2 ⇔∀r1 ∈M1 ∃r2 ∈M2. r1 is a prefix of r2. We define as ∃̄x r

the sequence resulting by removing from r ∈ M all the information about the variable x.

We distinguish two special classes of conditional traces. r ∈ M is said to be self-sufficient if

the first condition is (true,∅) and, for each ti = (η+i , η
−
i ) ↣ ci and ti+1 = (η+i+1, η

−
i+1) ↣ ci+1,

ci ⊢ η
+
i+1 (each store satisfies the successive condition). Moreover, r is x-self-sufficient if

∃̄Var∖{x} r is self-sufficient. Thus, this definition demands that for self-sufficient condi-

tional traces, no additional information (from other agents) is needed in order to complete

the computation.5

The semantics definition is based on a semantics evaluation function AJAKI (Comini

et al. 2013a) which, given an agent A and an interpretation I , builds the conditional

traces associated to A. The interpretation I is a function which associates to each pro-

cess symbol a set of conditional traces “modulo variance”. The semantics for a set of

process declarations D is the fixpoint F JDK ∶= lfp(DJDK) of the continuous immedi-

ate consequences operator DJDKI (p(x⃗)) ∶= ⊔p(x⃗)∶−A∈DAJAKI . Proof of full abstraction

w.r.t. the operational behavior of tccp is given in (Comini et al. 2013a).

Example 2.2 Consider the process declaration Dm of Example 2.1. Given an interpre-

tation I , the semantics of master(C ,G) is graphically represented in Figure 2, where we

5 The set of all self-sufficient conditional traces can be considered as a generalization (using conditional
states in place of stores) of the traditional strongest postcondition for semantics.

4



(cnear ,∅) ↣ c′near ∧ cdown
(cout ,{cnear}) ↣ c′out ∧ cup

(true,{cnear , cout}) ↣ true

∃̄C′,G′

I(master(C ′,G ′)) ∃̄C′,G′

I(master(C ′,G ′))

I(master(C ,G))

Fig. 2. Tree representation of DJ{Dm}KI (master(C ,G)) of Example 2.2.

have used some shortcuts for characteristic constraints. Namely, cnear ∶= (C = [near ∣ ]),

c′near ∶= ∃C′(C = [near ∣ C ′]), cdown ∶= ∃G′(G = [down ∣ G′]), cout ∶= (C = [out ∣ ]),

c′out ∶= ∃C′(C = [out ∣ C ′]), cup ∶= ∃G′(G = [up ∣ G′]).

The branch on the left represents the computation when a near signal arrives. The

first conditional state requires that cnear holds, thus the constraints c′near and cdown are

concurrently added to the store during that computational step. A recursive call is also

concurrently invoked. Process calls do not modify the store when invoked, but they affect

the store from the following time instant, which is graphically represented by the triangle

labeled with the interpretation of the process. The branch in the middle is taken only

if cout is entailed and cnear is not entailed by the initial store (it occurs in the negative

condition of the first conditional state in that branch). Finally, the branch on the right

represents the case when both cnear and cout are not entailed by the initial store.

3 Abstract semantics for tccp over csLTL formulas

In this section, we present a novel abstract semantics over formulas that approximates

the small-step semantics described in Section 2 and, therefore, the small-step operational

behavior of a tccp program. To this end, we first define an abstract domain of logic

formulas which is a variation of the classical Linear Temporal Logic (Manna and Pnueli

1992). Following (Palamidessi and Valencia 2001; de Boer et al. 2001; de Boer et al. 2002;

Valencia 2005), the idea is to replace atomic propositions by constraints of the underlying

constraint system.

Definition 3.1 (csLTL formulas) Given a cylindric constraint system C, c ∈ C and

x ∈ Var, formulas of the Constraint System Linear Temporal Logic over C are:

φ ∶∶= ˙true ∣ ˙false ∣ c ∣ ¬̇φ ∣ φ ∧̇ φ ∣ ∃̇x φ ∣ ◯φ ∣ φ U φ.

csLTLC is the set of all temporal formulas over C (we omit C if clear from the context).

˙true, ˙false, ¬̇, ∧̇ , ◯φ, φ1 U φ2 have the classical logical meaning. The atomic formula c ∈

C states that c has to be entailed by the current store. ∃̇x φ is the existential quantification

over the set of variables Var . As usual, we use φ1 ∨̇ φ2 as a shorthand for ¬̇φ1 ∧̇ ¬̇φ2;

φ1 →̇ φ2 for ¬̇φ1 ∨̇ φ2; φ1 ↔̇ φ2 for φ1 →̇ φ2 ∧̇ φ2 →̇ φ1; ◇φ for ˙true U φ and ◻φ for

¬̇◇ ¬̇φ. A constraint formula is an atomic formula c or its negation ¬̇ c. Formulas ◯φ and

¬̇◯φ are called next formulas. Constraint and next formulas are said to be elementary

formulas. Finally, formulas of the form φ1 U φ2, ◇φ or ¬̇(◻φ) are called eventualities.

We define the abstract domain F ∶= csLTL/↔̇ (i.e., the domain formed by csLTL formulas

modulo logical equivalence) ordered by →̇. The algebraic lattice (F, →̇, ⋁̇, ⋀̇, ˙true, ˙false)

is not complete, since both ⋀̇ and ⋁̇ always exist just for finite sets of formulas.
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The semantics of a temporal formula is typically defined in terms of an infinite sequence

of states which validates it. Here we use conditional traces instead. As usually done in

the context of temporal logics, we define the satisfaction relation ⊧ only for infinite

conditional traces. We implicitly transform finite traces (which end in ⊠) by replicating

the last store infinite times.

Definition 3.2 The semantics of φ ∈ F is given by function γF∶F→M defined as γF(φ) ∶=
⊔{r ∈ M ∣ r ⊧ φ}, where, for each φ,φ1, φ2 ∈ csLTL, c ∈ C and r ∈ M, satisfaction relation
⊧ is defined as:

r ⊧ ˙true and r /⊧ ˙false (3.1a)

(η+, η−) ↣ d ⋅ r′ ⊧ c iff η+ ⊢ c (3.1b)

stutt(η−) ⋅ r′ ⊧ c iff ∀d− ∈ η−. c ⊬ d− and r′ ⊧ c (3.1c)

r ⊧ ¬̇φ iff r ⊭ φ (3.1d)

r ⊧ φ1 ∧̇ φ2 iff r ⊧ φ1 and r ⊧ φ2 (3.1e)

r ⊧ ◯φ iff r1 ⊧ φ 6 (3.1f)

r ⊧ φ1 U φ2 iff ∃i ≥ 1.∀j < i. ri ⊧ φ2 and rj ⊧ φ1 (3.1g)

r ⊧ ∃̇x φ iff exists r′ s.t. ∃̄x r′ = ∃̄x r, r′ x-self-sufficient and r′ ⊧ φ (3.1h)

We say that φ ∈ F is a sound approximation of R ∈ M if R ⊑ γF(φ). φ is said to be

satisfiable if there exists r ∈ M such that r ⊧ φ, while it is valid if, for all r ∈ M, r ⊧ φ.

All the cases are fairly standard except (3.1b) and (3.1c). The conditional trace r = (η+,

η−) ↣ d ⋅ r′ prescribes that η+ is entailed by the current store, thus r models all the

constraint formulas c such that η+ ⊢ c. We have to note that, by the monotonicity of

the store of tccp computations, the positive conditions in conditional traces contains all

the information previously added in the constraint store. Furthermore, by the definition

of condition, since η+ cannot be in contradiction with η−, it holds that neither c is in

contradiction with η−. Thus, the conditional trace stutt(η−) ⋅ r′ models all the constraint

formulas c that are not in contradiction with the set η− and such that c holds in the

continuation r′ by monotonicity.

Lemma 3.3 The function γF is monotonic, injective and ⊓-distributive.

3.1 csLTL Abstract Semantics

The technical core of our semantics definition is the csLTL agent semantics evaluation

function ÂJAK which, given an agent A and an interpretation Î (for the process symbols

of A), builds a csLTL formula which is a sound approximation of the (concrete) behavior

of A. In the sequel, we denote by AΠ
C the set of agents and DΠ

C the set of sets of process

declarations built on signature Π and constraint system C.

Definition 3.4 Let PC ∶= {p(x⃗) ∣ p ∈ Π, x⃗ are distinct variables}. An F-interpretation

is a function PC → F modulo variance7. Two functions I, J ∶PC → F are variants if for

each π ∈ PC there exists a renaming ρ such that (Iπ)ρ = J(πρ). The semantic domain

IF is the set of all F-interpretations ordered by the point-wise extension of →̇.

6 rk denotes the sub-sequence of r starting from state k.
7 i.e., a family of elements of F, indexed by PC, modulo variance.
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Definition 3.5 (csLTL Semantics) Given A ∈ AΠ
C and Î ∈ IF, we define the csLTL

semantics evaluation ÂJAK
Î

by structural induction as follows.

ÂJskipK
Î
∶= true ÂJA1 ∥ A2KÎ ∶= ÂJA1KÎ ∧̇ ÂJA2KÎ

ÂJtell(c)K
Î
∶= ◯ c ÂJ∃xAK

Î
∶= ∃̇x ÂJAK

Î
ÂJp(x⃗)K

Î
∶= ◯ Î(p(x⃗))

ÂJ∑ni=1 ask(ci) → AiKÎ ∶= ◻(⋀̇
n

i=1 ¬̇ ci) ∨̇ ((⋀̇
n

i=1 ¬̇ ci) U ⋁̇
n

i=1 (ci ∧̇ ◯ÂJAiKÎ))

ÂJnow c then A1 else A2KÎ ∶= (c ∧̇ ÂJA1KÎ) ∨̇ (¬̇ c ∧̇ ÂJA2KÎ)

Given D ∈ DΠ
C we define the immediate consequence operator D̂JDK∶ IF → IF as

D̂JDK
Î
(p(x⃗)) ∶= ⋁̇ {ÂJAK

Î
∣p(x⃗) ∶− A ∈D}

We have that Â is a sound approximation of A and D̂ is a sound approximation of D.

Theorem 3.6 (Correctness of Â and D̂) Let A ∈ AΠ
C, D ∈ DΠ

C and Î ∈ IF. Then,

AJAKγF(Î) ⊑ γ
F(ÂJAK

Î
) and DJDKγF(Î) ⊑ γ

F(D̂JDK
Î
).

Example 3.7 Consider the process declaration Dm of Example 2.1 and let us use ◯n

to abbreviate the repetition of ◯ n-times. Given Î ∈ IF, with Definition 3.5 we compute

φM (Î) ∶= D̂J{Dm}K
Î
(master(C ,G))) = φnear(Î) ∨̇ φout(Î) ∨̇ φcwait(Î)

where

φnear(Î) = ∃̇C′,G′ (C = [near ∣ ] ∧̇ ◯C = [near ∣ C′] ∧̇ ◯G = [down ∣ G′] ∧̇ ◯ Î(master(C ′,G ′)))

φout(Î) = ∃̇C′,G′ (¬̇(C = [near ∣ ]) ∧̇ ◯C = [out ∣ C′] ∧̇

C = [out ∣ ] ∧̇ ◯G = [up ∣ G′] ∧̇ ◯ Î(master(C ′,G ′)))

φcwait(Î) = ¬̇(C = [near ∣ ]) ∧̇ ¬̇(C = [out ∣ ]) ∧̇ ◯ Î(master(C ,G))

The three disjuncts of φM (Î) match the three possible behaviors of master(C ,G): when

signal near is emitted by the train, when out is emitted, and when no signal arrives.

4 Abstract diagnosis of tccp with csLTL formulas

Since F is not a complete lattice, it is impossible to find for the function γF an adjoint

function α which forms a Galois Connection ⟨α, γ⟩, and therefore we cannot use the

abstract diagnosis framework for tccp defined in (Comini et al. 2011). Thus, we propose

in this section a new weaker version of abstract diagnosis that works on F 8.

Given a set of declarations D and Ŝ ∈ IF, which is the specification of the abstract

intended behavior of D over F, we say that

1. D is (abstractly) partially correct w.r.t. Ŝ if F JDK ⊑ γF(Ŝ).
2. D is (abstractly) complete w.r.t. Ŝ if γF(Ŝ) ⊑ F JDK.

The differences between F JDK and γF(Ŝ) are usually called symptoms. Many of the

8 Actually, the proposal is defined using just γF only for the sake of simplicity. It could easily be defined
parametrically w.r.t. a suitable family of concretization functions.
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symptoms are just a consequence of some “originating” ones, those which are the di-

rect consequence of errors. The abstract diagnosis determines exactly the “originating”

symptoms and, in the case of incorrectness, the faulty process declarations in D. This

is captured by the definitions of abstractly incorrect process declaration and abstract

uncovered element :9

Definition 4.1 Let D ∈ DΠ
C, R a process declaration for process p, φt ∈ F and Ŝ ∈ IF.

● R is abstractly incorrect w.r.t. Ŝ (on testimony φt) if φt →̇ D̂J{R}K
Ŝ
(p(x⃗)) and φt ∧̇

Ŝ(p(x⃗)) = ˙false.
● φt is an uncovered element for p(x⃗) w.r.t. Ŝ if φt →̇ Ŝ(p(x⃗)) and φt ∧̇ D̂JDK

Ŝ
(p(x⃗)) =

˙false.

Informally, R is abstractly incorrect if it derives a wrong abstract element φt from the

intended semantics. Dually, φt is uncovered if the declarations cannot derive it from the

intended semantics.

Theorem 4.2 Let D ∈ DΠ
C and Ŝ ∈ IF. (1) If there are no abstractly incorrect process

declarations in D (i.e., D̂JDK
Ŝ
→̇ Ŝ), then D is partially correct w.r.t. Ŝ. (2) If D is

partially correct w.r.t. Ŝ and D has abstract uncovered elements then D is not complete.

Absence of abstractly incorrect declarations is a sufficient condition for partial correct-

ness, but it is not necessary. Because of the approximation, it can happen that a (con-

cretely) correct declaration is abstractly incorrect. Hence, abstract incorrect declarations

are in general just a warning about a possible source of errors. However, an abstract

correct declaration cannot contain an error; thus, no (manual) inspection is needed for

declarations which are not abstractly incorrect. Moreover, as shown by the following

theorem, all concrete errors—that are “visible”—are indeed detected, as they lead to

an abstract incorrectness or abstract uncovered. Intuitively, a concrete error is visible if

we can express a formula φ whose concretization reveals the error (i.e., if the logic is

expressive enough).

Theorem 4.3 Let R be a process declaration for p(x⃗), S a concrete specification and

Ŝ a sound approximation for S (i.e., S ⊑ γF(Ŝ)). (1) If DJ{R}KS ⋢ γF(Ŝ) and it exists

φt such that γF(φt) ⊑ DJ{R}KS (p(x⃗)) and φt ∧̇ Ŝ(p(x⃗)) = ˙false, then R is abstractly

incorrect w.r.t. Ŝ (on testimony φt). (2) If there exists an abstract uncovered element φ

w.r.t. Ŝ, then there exists r ∈ γF(φ) such that r ∉ DJ{R}KS (p(x⃗)).

Point 2 says that the concrete error has an abstract symptom which is not hidden by the

approximation on Ŝ and, moreover, there exists a formula φt which can express it.

In the following examples, we borrow from (Alpuente et al. 2006) the notation for last

entailed value of a stream: X=̇c holds if the last instantiated value in the stream X is c.

Example 4.4 We verify (for Example 2.1) that each time a near signal arrives from a

train, the order down is sent to a gate process.10 To model this property, we define the

specification (of the property) Ŝdown as

φordersent ∶= Ŝdown(master(C ,G)) ∶= ◻(C=̇near →̇ ◇(G=̇down))

9 It is worth noticing that although the notions defined in this section are similar to those defined for
the standard approach, the formal definitions and proofs are different due to the weaker framework.

10 A more interesting property, namely that, in addition, the gate is eventually down, is verified in
(Comini et al. 2014). Here we have simplified the property due to space limitations.
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To check whether the program implies the specification (D̂J{Dm}K
Ŝdown

→̇ Ŝdown) we have

to check if φM (Ŝdown) →̇ φordersent (where φM (⋅) is defined in Example 3.7). Each of the

three disjuncts of φM (Ŝdown) implies φordersent . Thus, by Theorem 4.2, Dm is partially

correct w.r.t. Ŝdown .

When the check of a process declaration R against a specification S fails, our method

reports that R is not partially correct w.r.t. S. If this occurs, the formula testimony for

the possible incorrectness gives useful information to fix the process declaration or check

whether it corresponds to a false positive.

Example 4.5 Now we show how our technique detects an error in a buggy set of dec-

larations. We remove instruction tell(G = [up ∣ G′]) in the process declaration Dm (of

Example 2.1). To avoid misunderstandings, we call the modified process master′ and let

R be the new process declaration.

We aim to verify that the order up is sent whenever the signal out is received:

φ ∶= Ŝup(master ′(C ,G)) ∶= ◻((C=̇out) →̇ ◇(G=̇up))

We need to compute the (one step) semantics for the (buggy version of the) process:

φ′ ∶= D̂J{R}K
Ŝup

(master ′(C ,G)) = φ′near ∨̇ φ
′
out ∨̇ φ

′
cwait

where

φ′near ∶= ∃̇C′,G′ (C = [near ∣ ] ∧̇ ◯C = [near ∣ C′] ∧̇◯G = [down ∣ G′] ∧̇ ◯ Ŝup(master ′(C ′,G ′)))

φ′out ∶= ∃̇C′,G′ (¬̇(C = [near ∣ ]) ∧̇ C = [out ∣ ]∧̇◯(C = [out ∣ C′] ∧̇ ◯ Ŝup(master ′(C ′,G ′))))

φ′cwait ∶= ¬̇(C = [near ∣ ]) ∧̇ ¬̇(C = [out ∣ ]) ∧̇ ◯ Ŝup(master ′(C ,G))

We detect an incorrectness of R (in master′ process) w.r.t. Ŝup on testimony φ′out since

φ′out →̇ φ′ and φ′out ∧̇ φ = ˙false. The testimony suggests that on channel C we have out

signal but we do not see the corresponding up signal on channel G.

Our technique behaves negatively for sets of declarations D where D̂JDK has more than

one fixpoint. This happens with programs with loops that do not produce contributes at

all (which are in some sense non meaningful programs). In such situations, we can have

that the actual behavior does not model a specification Ŝ which is a non-least fixpoint of

D̂JDK, but, since Ŝ is a fixpoint, we do not detect the abstractly incorrect declaration,

as shown by the following example.

Example 4.6 (Pathological cases) Let Dp ∶= {q(y) ∶− now y = 1 then q(y) else q(y)}

and Ŝp(q(y)) ∶= ◇(y = 1) be the specification. Then, we compute D̂JDpKŜp(q(y)) =

(y = 1 ∧̇ ◇ y = 1) ∨̇ (¬̇ y = 1 ∧̇ ◇ y = 1). We can see that D̂JDpKŜp →̇ ◇(y = 1), thus Dp is

partially correct w.r.t. Ŝp. However, y = 1 is not explicitly added by the process.

Note that, if Ŝ(p(x⃗)) is assumed to hold for each process p(x⃗) defined in D and

D̂JDK
Ŝ
→̇ Ŝ, then F JDK satisfies Ŝ.

4.1 An automatic decision procedure for csLTL

In order to make our abstract diagnosis approach effective, we have defined an automatic

decision procedure to check the validity of the formulas involved in Definition 4.1 (of the

9



Table 1. α- and β-formulas rules.

α A(α)

R1 ¬̇ ¬̇φ {φ}
R2 φ1 ∧̇ φ2 {φ1, φ2}
R3 ¬̇◯φ {◯¬̇φ}

β B1 (β) B2 (β)

R4 ¬̇(φ1 ∧̇ φ2) {¬̇φ1} {¬̇φ2}
R5 ¬̇(φ1 U φ2) {¬̇φ1, ¬̇φ2} {φ1, ¬̇φ2, ¬̇◯(φ1 U φ2)}
R6 φ1 U φ2 {φ2} {φ1, ¬̇φ2,◯((Γ∗ ∧̇ φ1) U φ2)}

form ψ →̇ φ with φ = Ŝ(p(x⃗)) and ψ = D̂JDK
Ŝ
(p(x⃗))). We adapt to csLTL the tableau

construction for Propositional LTL of (Gaintzarain et al. 2008; Gaintzarain et al. 2009).

(Comini et al. 2013b) contains a preliminary version of the method.

Intuitively, a tableau consists of a tree whose nodes are labeled with sets of formulas.

The root is labeled with the set of formulas which has to be checked for satisfiability.

Branches are built according to rules defined on the syntax of formulas (see Table 1

defining α and β formulas). The basic idea is that a formula from a node is selected and,

depending on its form, a rule of Table 1 is applied. β formulas generate a bifurcation on

the tree and there are specific rules for next and existential quantification formulas.

If all branches of the tree are closed (Definition 4.8), then the formula has no models.

Otherwise, we can obtain a model from the open branches.

Definition 4.7 (csLTL tableau) A csLTL tableau for a finite set of formulas Φ is a

tuple TΦ = (Nodes, nΦ,L,B ,R ) such that:

1. Nodes is a finite non-empty set of nodes;

2. nΦ ∈ Nodes is the initial node;

3. L ∶ Nodes → ℘(csLTL) is the labeling function that associates to each node the formulas

which are true in that node; the initial node is labeled with Φ;
4. B is the set of branches such that exactly one of the following points holds for every

branch b = n0, . . . , ni, ni+1, . . . , nl ∈ B and every 0 ≤ i < l:

(a) for an α-formula α ∈ L(ni), L(ni+1) = {A(α)} ∪ L(ni) ∖ {α};
(b) for a β-formula β ∈ L(ni), L(ni+1) = {B1 (β)}∪L(ni)∖{β} and there exists another branch

in B of the form b′ = n0, . . . , ni, n
′
i+1, . . . , n

′
k such that L(n′i+1) = {B2 (β)} ∪ L(ni) ∖ {β} ;

(c) for an existential quantified formula ∃̇x φ
′ ∈ L(ni), L(ni+1) = {φ′′} ∪L(ni) ∖ {∃̇x φ

′} where
φ′′ ∶= φ′[y/x] with y fresh variable;

(d) in case L(ni) is a set formed only by elementary formulas, L(ni+1) = next(L(ni)), where
next(Φ) ∶= {φ ∣ ◯φ ∈ Φ} ∪ {¬̇φ ∣ ¬̇◯φ ∈ Φ} ∪ (Φ ∩C).

Rules 4a and 4b are standard, replacing α and β-formulas with one or two formulas

according to the matching pattern of rules in Table 1, except for Rule R6 that uses the

so-called context Γ∗, which is defined in the following. The next operator used in Rule 4d

is different from the corresponding one of PLTL since it also preserves the constraint

formulas. This is needed for guaranteeing correctness in the particular setting of tccp

where the store is monotonic. Finally, Rule 4c is specific for the ∃̇ case: ∃̇x is removed

after renaming x with a fresh variable11.

Definition 4.8 A node in the tableau is inconsistent if it contains a couple of formulas

φ, ¬̇φ, or the formula ˙false, or a constraint formula ¬̇ c′ such that the merge c of all the

11 The csLTL existential quantification does not correspond to the one of FO logic. It serves to model
local variables, and ∃̇x φ can be seen just as φ where the information about x is local.
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(positive) constraint formulas c1, . . . , cn in the node (i.e., c ∶= c1 ⊗ ⋅ ⋅ ⋅ ⊗ cn) is such that

c ⊢ c′. A branch is closed if it contains an inconsistent node.

The last condition for inconsistence of a node is particular to the ccp context.

We now describe the algorithm that automatically builds the csLTL tableau for a given

set of formulas Φ (see (Comini et al. 2014) for the pseudocode). The construction con-

sists in selecting at each step a branch that can be extended by using α or β rules or ∃̇

elimination. When none of these can be applied, the next operator is used to pass to the

next stage. When dealing with eventualities, to determine the context Γ∗ in Rule R6, it is

necessary to distinguish the eventuality that is being unfolded in the path. Given a node

n and φ ∈ L(n), Γ ∶= L(n) ∖ {φ}. Then, when Rule R6 is applied to a distinguished even-

tuality, we set Γ∗ ∶= ⋁̇γ∈Γ ¬̇γ; otherwise Γ∗ ∶= true. The use of contexts is the mechanism

to detect the loops that allows one to mark branches containing eventuality formulas as

open or to generate inconsistent nodes and mark branches as closed. A node is marked

as closed when it is inconsistent while is marked as open when (1) it is the last node of

the branch and contains just constraint formulas or (2) the branch is cyclic and all the

eventualities in the cycle have been already distinguished.

In order to ensure termination of the algorithm, it is necessary to use a fair strategy

to distinguish eventualities, in the sense that every eventuality in an open branch must

be distinguished at some point. This assumption and the fact that, given a finite set of

initial formulas, there exists only a finite set of possible labels in a systematic tableau,

imply termination of the tableau construction. Moreover, the constructed tableau is sound

and complete. Therefore, to check the validity of a formula of the form ψ →̇ φ, with φ =

Ŝ(p(x⃗)) and ψ = D̂JDK
Ŝ
(p(x⃗)), we just have to build the tableau for its negation T¬̇(ψ→̇φ)

and check if it is closed or not. If it is, we have that D is abstractly correct. Otherwise,

we can extract from T¬̇(ψ→̇φ) an explicit testimony ϕ of the abstract incorrectness of D.

The construction of ψ = D̂JDK
Ŝ
(p(x⃗)) is linear in the size of D. The systematic

tableau construction of ¬̇(ψ →̇ φ) (from what said in (Gaintzarain et al. 2009)) has worst

case O(2O(2
∣ ¬̇(ψ→̇φ)∣

)). However, we believe that such bound for the worst-case asymptotic

behavior is quite meaningless in this context, since it is not very realistic to think that the

formulas of the specification should grow much (big formulas are difficult to comprehend

and in real situations people would hardly try even to imagine them). Moreover, note that

tableau explosion is due to nesting of eventualities and in practice really few eventualities

are used in specifications. Therefore, in real situations, we do not expect that (extremely)

big tableaux will be built.

5 Related Work

A Constraint Linear Temporal Logic is defined in (Valencia 2005) for the verification of

a different timed concurrent language, called ntcc, which shares with tccp the concurrent

constraint nature and the non-monotonic behavior. The restricted negation fragment of

this logic, where negation is only allowed for state formulas, is shown to be decidable.

However, no efficient decision procedure is given (apart from the proof itself). Moreover,

the verification results are given for the locally-independent fragment of ntcc, which

avoids the non-monotonicity of the original language. In contrast, in this work, we address

the problem of checking temporal properties for the full tccp language.
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Some model-checking techniques have been defined for tccp in the past (Falaschi and

Villanueva 2006; Alpuente et al. 2005a; Alpuente et al. 2005b; Falaschi et al. 2001).

It is worth noting that the notions of correctness and completeness in these works are

defined in terms of F JDK, i.e., in terms of the concrete semantics, and therefore their

check requires a (potentially infinite) fixpoint computation. In contrast, the notions of

abstractly incorrect declarations and abstract uncovered elements are defined in terms of

just one application of D̂JDK to Ŝ. Moreover, since D̂JDK is defined compositionally, all

the checks are defined on each process declaration in isolation. Hence, our proposal can

be used with partial sets of declarations. When a property is falsified, model checking

provides a counterexample in terms of an erroneous execution trace, leaving to the user

the problem of locating the source of the bug. On the contrary, we identify the faulty

process declaration.

In (Falaschi et al. 2007), a first approach to the declarative debugging of a ccp lan-

guage is presented. However, it does not cover the particular extra difficulty of the non-

monotonicity behavior, common to all timed concurrent constraint languages. This makes

our approach significantly different. Moreover, although they propose the use of LTL for

the specification of properties, their formulation, based on the depth-k concretization

function, complicates the task of having an efficient implementation.

Finally, this proposal clearly relates to the abstract diagnosis framework for tccp de-

fined for Galois Insertions (Comini et al. 2011). That work can compete with the precision

of model checking, but its main drawback is the fact that the abstract domain did not

allow to specify temporal properties in a compact way. In fact, specifications consisted

of sets of abstract conditional traces. Thus, specifications were big and unnatural to be

written. The use of temporal logic in this proposal certainly overcomes this problem.

6 Conclusion and Future Work

We have defined an abstract semantics for tccp based on the domain of a linear temporal

logic with constraints. The semantics is correct w.r.t. the behavior of the language.

By using this abstract semantics, we have defined a method to validate csLTL formulas

for tccp sets of declarations. Since the abstract semantics cannot be defined by means of

a Galois Connection, we cannot use the abstract diagnosis framework for tccp defined in

(Comini et al. 2011), thus we devised (from scratch) a weak version of the abstract diag-

nosis framework based only on a concretization function γ. It works by applying D̂JDK to

the abstract specification and then by checking the validity of the resulting implications

(whether that computation implies the abstract specification). The computational cost

depends essentially on the cost of that check of the implication.

We have also presented an automatic decision procedure for the csLTL logic, thus

we can effectively check the validity of that implication. We are currently finishing to

implement a proof of concept tool, which is available online at URL http://safe-tools.

dsic.upv.es/tadi/, that realizes the proposed instance. Then we would be able to

compare with other tools and assess the “real life” goodness of our proposal.

In the future, we also plan to explore other instances of the method based on logics

for which decision procedures or (semi)automatic tools exists. This proposal can also be

immediately adapted to other concurrent (non-monotonic) languages (like tcc and ntcc)

once a suitable fully abstract semantics has been developed.
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//riunet.upv.es/handle/10251/8351.

de Boer, F. S., Gabbrielli, M., and Meo, M. C. 2000. A Timed Concurrent Constraint
Language. Information and Computation 161, 1, 45–83.

de Boer, F. S., Gabbrielli, M., andMeo, M. C. 2001. A Temporal Logic for Reasoning about
Timed Concurrent Constraint Programs. In TIME ’01: Proceedings of the Eighth International
Symposium on Temporal Representation and Reasoning (TIME’01). IEEE Computer Society,
Washington, DC, USA, 227.

de Boer, F. S., Gabbrielli, M., and Meo, M. C. 2002. Proving correctness of Timed
Concurrent Constraint Programs. CoRR cs.LO/0208042.

Falaschi, M., Olarte, C., Palamidessi, C., and Valencia, F. D. 2007. Declarative Diagnosis
of Temporal Concurrent Constraint Programs. In Logic Programming, 23rd International
Conference, ICLP 2007, Proceedings, V. Dahl and I. Niemelä, Eds. Lecture Notes in Computer
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