
Under consideration for publication in Formal Aspects of Computing

A program analysis framework for
tccp based on abstract interpretation
Marco Comini1 and Maŕıa-del-Mar Gallardo2 and Laura Titolo3 and Alicia Villanueva4

1DIMI, Università degli Studi di Udine, Italy. (e-mail: marco.comini@uniud.it)
2LCC, Universidad de Málaga, Spain. (e-mail: gallardo@lcc.uma.es)1

3National Institute of Aerospace, USA. (e-mail: laura.titolo@nianet.org)
4DSIC, Universitat Politècnica de València, Spain. (e-mail: villanue@dsic.upv.es)2

Abstract. The Timed Concurrent Constraint Language (tccp) is a timed extension of the concurrent con-
straint paradigm. tccp was defined to model reactive systems, where infinite behaviors arise naturally. In
previous works, a semantic framework and abstract diagnosis method for the language have been defined.

On the basis of that semantic framework, this paper proposes an abstract semantics that, together with
a widening operator, is suitable for the definition of different analyses for tccp programs. The abstract
semantics is correct and can be represented as a finite graph where each node represents a hypothetical
(abstract) computational step of the program. The widening operator allows us to guarantee the convergence
of the abstract fixpoint computation.

Keywords: concurrent constraint paradigm; abstract interpretation; abstract semantics; widening operators

1. Introduction

The Concurrent Constraint Paradigm (ccp, [Sar93]) is a simple, logic model which is different from other
(concurrent) programming paradigms mainly due to the notion of store-as-constraint that replaces the clas-
sical store-as-valuation model. It is based on an underlying constraint system that handles constraints on
variables and deals with partial information. Within this family, [dBGM00] introduced the Timed Concur-
rent Constraint Language (tccp) by adding to the original ccp model the notion of time and the ability
to capture the absence of information. With these features, one can specify naturally behaviors typical of
reactive systems such as timeouts or preemption actions.

It is well-known that modeling and analyzing concurrent systems by hand can be an extremely hard
task. Thus, the development of automatic formal methods is essential. The particular characteristics of
ccp languages make such task even harder, since we have to deal with technical issues due to the infinite

1 This author has been supported by the Andalusian Excellence Project P11-TIC-7659.
2 This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN 2015-69175-C4-1-R
and TIN 2013-45732-C4-1-P and by Generalitat Valenciana PROMETEOII/2015/013.
Correspondence and offprint requests to: M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

2 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

computations (natural to reactive systems), use of negative information (particular for timed ccp languages)
and non-determinism.

One well established technique to develop semantic-based program analysis is abstract interpretation
[CC77], which relies on the definition of a specific approximated abstract semantics that captures the in-
formation needed to perform the analysis. Typically, one defines an over-approximation of the concrete
semantics that includes all possible traces of the system, possibly introducing nonexistent ones. This allows
one to develop (correct) analysis of universal properties. However, it does not allow one to analyze existen-
tial properties, for instance to verify that there exists a suspension trace. In our proposal, we follow such
approach starting from the concrete semantics for tccp defined in [CTV13]. This semantics addresses all
thorniest difficulties of tccp (i.e., infinite computations, use of negative information and non-determinism).
Indeed, it is fully abstract w.r.t. the behavior of tccp. Furthermore, it is condensed, i.e., it employs in the
denotations the minimal amount of information that is needed (to distinguish different behaviors). Therefore,
such semantics is particularly well-suited as the base to apply abstract interpretation techniques, which take
great advantage from a bottom-up and condensed definition. To the best of our knowledge, this is the only
bottom-up and condensed semantics which is fully abstract w.r.t. the full tccp language. The fully-abstract
denotational semantics of [dBGM00] captures just finite computations and has a top-down definition thus it
is not well-suited for our purposes.

In the sequel, we define a framework of over-approximated abstract semantics parametric w.r.t. an ab-
stract constraint system. This allows us to recycle all of the huge work done for developing abstract domains
for logic programs (such as groundness analysis). More interestingly, we can also make new analyses for
reactive systems such as non-suspension analysis and universal (safety and liveness) properties.

The proposed framework follows two complementary abstraction techniques. On the one hand, since
processes in tccp communicate and synchronize through a shared store where both the presence and absence
of information are relevant for the system progress, we make use of two dual notions of approximations
(over/under-approximated relations) [AGPV05]. The combination of these two abstract relations allows us
to guarantee the correctness of the abstraction and, at the same time, to do not lose too much precision.

On the other hand, since we need to preserve the notion of time—to be able to express properties of
interest like safety or temporal properties—the abstract semantics domains that we need to consider are not
Noetherian (even if we use finite abstract constraint systems). Thus, in order to have an effective technique,
we use the widening approach of [BHRZ05, CC77] to ensure finiteness of the analysis. Given a tccp program,
any instance of the abstraction framework computes an abstract graph that can be used to check relevant
(temporal) system properties.

Applicability of our approach is illustrated by showing different analyses over our guiding example, a
lift/passenger system. Thanks to the compositionality of the abstract semantics, we can focus the analysis
on a particular process. For instance, we show that we can analyze properties regarding the lift process,
independently from the rest of the system. More specifically, properties such as the lift direction and floor
are consistently updated or the lift never suspends depend only on the lift process, thus we do not need to
compute the semantics for the rest of the system. We can also check properties depending on the interaction
among processes by considering the whole system. To this end, we describe how the abstract graph of the
whole system lift/passenger can be constructed, and exemplify some properties that can be directly proved
on the graph.

Due to abstract interpretation, in the abstract semantics we inevitably have spurious behaviors that can
prevent us from proving specific properties. We discuss how properties such as if the lift is going up, then it
eventually will go down could also be analyzed by applying techniques to remove spurious behaviors.

Contributions of this work. This paper is an extended version of [CGTV15], where a framework of
abstract semantics suitable for program analysis of tccp programs was presented. In this paper, we present
an improved version of the framework which admits richer abstract domains, and this allows us to handle
more elaborated properties and systems. More specifically, this paper includes

● an abstract semantic domain schema which imposes less demanding conditions (w.r.t. [CGTV15]) on the
relation between the abstract and the concrete constraint system underlying the language;

● results and proofs for the correctness of the proposed abstract semantics;

● a widening for the abstract semantics (already presented in [CGTV15]) that allows to effectively perform
the analyses; and

● examples that illustrate both, the kind of properties that can be checked by means of the proposed

A program analysis framework for tccp based on abstract interpretation 3

framework, and how the new schema allows us to use a more elaborated abstraction for the concrete
constraint system.

Plan of the paper. Section 2 introduces the tccp language and the denotational model of the concrete
semantics which is the basis for the definition of the abstract semantics. A guiding example is also introduced.
Section 3 presents the proposed abstract semantics and the defined widening, which ensures finiteness.
Section 4 proposes some specific analysis that can be defined on the proposed abstract semantics. Section 5
compares our proposal to related work and Section 6 concludes.

Proofs of correctness results can be consulted in Appendix A.

2. The tccp language

The tccp language [dBGM00] is particularly suitable to specify both reactive and time critical systems. As
the other languages of the ccp paradigm [Sar93], it is parametric w.r.t. a cylindric constraint system which
handles the data information of the program in terms of constraints. The computation progresses as the
concurrent and asynchronous activity of several agents that can accumulate information in a store, or query
information from it. A cylindric constraint system3 is an algebraic structure ⟨C,⪯,⊗, false, true,Var ,∃⟩
composed of a set of constraints C such that (C, ⪯) is a (complete) algebraic lattice where ⊗ is the lub
operator and false and true are respectively the greatest and the least element of C; Var is a denumerable
set of variables and ∃ existentially quantifies variables over constraints. The entailment ⊢ is the inverse of
⪯.

Given a cylindric constraint system C and a set of process symbols Π, the syntax of agents is given by
the grammar

A ∶∶= skip ∣ tell(c) ∣ A ∥ A ∣ ∃xA ∣ ∑ni=1 ask(ci)→ A ∣ now c then A else A ∣ p(Ð→x)

where c, c1, . . . , cn are finite4 constraints in C; p/m ∈ Π, and Ð→x denotes a generic tuple of m variables. A
tccp program is an object of the form D . A, where A is an agent, called initial agent, and D is a set of
process declarations of the form p(Ð→x) ∶− A (for some agent A). The notion of time is introduced by defining
a discrete and global clock.

The operational semantics of tccp, defined in [dBGM00], is formally described by a transition system
T = (Conf ,Ð→) where configurations Conf are pairs ⟨A, c⟩ representing the agent A to be executed in the
current global store c ∈ C. Informally, the tell(c) agent adds the constraint c to the store in the next time
instant and then stops. The choice agent ∑ni=1 ask(ci) → Ai consults the store and non-deterministically
executes (at the following time instant) one of the agents Ai whose corresponding guard ci is entailed by
the current store; otherwise, if no guard is entailed by the store, the agent suspends. The conditional agent
now c then A else B behaves in the current time instant like A (respectively B) if c is (respectively is not)
entailed by the store. A ∥ B models the parallel composition of A and B in terms of maximal parallelism.
The agent ∃xA makes variable x local to A. To this end, it uses the ∃ operator of the constraint system.
Finally, the agent p(Ð→x) takes non-deterministically from D a declaration of the form p(Ð→x) ∶− A and then
executes A at the following time instant.

Example 2.1 (Guiding example) The following code shows a possible tccp implementation of a simple
lift/passenger system. We assume that the lift is located at a building with N+1 floors numbered as 0,1,⋯,N .
The lift process uses variables to store the current floor where the lift is placed and the movement direction
(up/down), respectively. At each time instant, the lift moves, if possible, to the following floor, according to
the current movement direction. When the lift reaches floors 0 or N , then it changes the movement direction.

Process pssngr models the behavior of a client that wants to take the lift to go from origin floor O to
destination floor D. This process makes use of variable St to store the passenger’s state: wait , when she is
waiting for the lift, in, when she is inside the lift, and out , when she has arrived at the destination floor.

The underlying concrete Cylindric Constraint System is formed by taking equivalence classes, modulo

3 See [dBGM00, Sar93] for more details on cylindric constraint systems, where traditionally, the glb is not explicitly defined.
4 The notion of finite constraints was formally defined in [SRP91] and, in the context of algebraic constraint systems, is
equivalent to the notion of compact element.

4 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

logical equivalence, of finite conjunctions of (dis)equalities over variables, constants {up,down, in,out ,wait}
and numbers {0, . . . ,N} plus two arithmetic increment and decrement operations over integers. In this
specific case the instance of ⊗ is thus conjunction, while ⪯ is the opposite of logical implication and ∃x is the
operation that removes all conjuncts referring to variable x after information has been propagated within a
constraint (e.g., ∃x(x = y ∧ x = 3) = y = 3). Moreover, due to the monotonicity of the store, we use streams
(written in a list-fashion way) to simulate imperative-style variables ([dBGM00]). In our example, CF , Dir
and St are streams.

main(N ,O ,D) ∶ − ∃CF ,Dir ,St (lift(N,CF ,Dir) ∥ pssngr(CF ,O,D,St) ∥
tell(CF = [0 ∣]) ∥ tell(Dir = [up ∣]) ∥ tell(St = [wait ∣]))

lift(N ,CF ,Dir) ∶ − ∃CF l,Dir l, F (now(Dir = [up ∣] ∧CF = [N ∣])
then (tell(Dir = [up ∣ Dir l]) ∥ tell(Dir l = [down ∣]) ∥ lift(N ,CF ,Dir l))
else now (Dir = [up ∣])

then (tell(CF = [F ∣ CF l]) ∥ ask(true)→ (tell(CF l = [F + 1 ∣]) ∥ lift(N ,CF l ,Dir)))
else now (Dir = [down ∣] ∧CF = [0 ∣])

then (tell(Dir = [down ∣ Dir l]) ∥ tell(Dir l = [up ∣]) ∥ lift(N ,CF ,Dir l))
else (tell(CF = [F ∣ CF l]) ∥ ask(true)→ (tell(CF l = [F − 1 ∣]) ∥ lift(N ,CF l ,Dir))))

pssngr(CF ,O ,D ,St) ∶ − ∃St ′,O′,D′ (
ask(CF = [D ∣] ∧ St = [in ∣])→ (tell(St = [in ∣ St′]) ∥ tell(St ′ = [out ∣]))
+ ask(CF = [O ∣] ∧ St = [wait ∣])→ (tell(St = [wait ∣St′]) ∥ tell(St ′ = [in ∣]) ∥

tell(CF = [∣ CF ′]) ∥ pssngr(CF ′,O ,D ,St ′))
+ ask((CF = [O′ ∣] ∧O′ ≠ O ∧CF = [D′ ∣] ∧D′ ≠D))→

(tell(CF = [∣ CF ′]) ∥ pssngr(CF ′,O ,D ,St ′)))
+ ask((CF = [D ∣] ∧ St ≠ [in ∣]))→ (tell(CF = [∣ CF ′]) ∥ pssngr(CF ′,O ,D ,St ′)))
+ ask((CF = [O ∣] ∧ St ≠ [wait ∣]))→ (tell(CF = [∣ CF ′]) ∥ pssngr(CF ′,O ,D ,St ′)))

Note that the three last possible branches have the same behavior, namely they perform a recursive call to
the pssngr process with the updated argument values when the passenger state (wait , in or out) does not
change.

2.1. The concrete denotational semantics

In this section, we briefly recall the concrete denotational domain and semantics of [CTV13], which is fully
abstract5 w.r.t. the small-step operational behavior of tccp. Fully detailed version of all definitions and proof
of full abstraction, as well as of all results here summarized can be found in [CTV13].

Such semantics consists of a set of conditional (timed) traces that represent, in a compact way, all
the possible behaviors that the program can manifest when executed with a specific input (initial store).
Conditional traces can be seen as hypothetical computations in which, for each time instant, we have a
condition representing the information that the global store has to satisfy in order to proceed to the next
time instant. Briefly, a conditional trace is a (possibly infinite) sequence t1⋯tn⋯ of conditional states, which
can be of three forms:

conditional store: a pair η ↣ c, where η is a condition, defined below, and c ∈ C a store;

stuttering: the construct stutt(C), with C ⊆ C ∖ {true};

end of a process: the construct ⊠, which cannot be followed by other conditional states.

The empty sequence of conditional states is denoted by ε. Intuitively, the conditional store η ↣ c means
that, if condition η is satisfied by the current store, the computation proceeds so that, in the following time

5 Recall that fully abstract means that the semantics of two programs is identical if and only if the two programs have the
same execution behavior.

A program analysis framework for tccp based on abstract interpretation 5

instant, the store is c. The stuttering construct stutt({c1, . . . , cn}) models the suspension of the computation
when none of the guards in an ∑ni=1 ask(ci)→ Ai is satisfied.

A condition η is a pair η = (η+, η−) where η+ ∈ C and η− ∈ ℘(C) are called positive and negative condition,
respectively. The positive/negative condition represents information that a given store must/must not entail,
thus they have to be consistent in the sense that ∀c− ∈ η−, η+ ⊬ c−. For instance, the condition (x > 2,{x > 1})
is not consistent since x > 2 ⊢ x > 1. We also say that a store c ∈ C is consistent with η, written c ≫ η,
if η+ ⊗ c ≠ false and ∀h ∈ η−. c ⊬ h. Moreover, we say that c satisfies η, written c ⊫ η, when c ⊢ η+ and
∀h ∈ η−. c ⊬ h.

Conditional traces are monotone (i.e., for each ti = ηi ↣ ci and tj = ηj ↣ cj such that j ≥ i, cj ⊢ ci)
and consistent (i.e., each store in a trace does not entail the negative conditions of the following conditional
state). CT is the set of all maximal conditional traces, i.e., infinite traces or finite traces ending with ⊠.

Example 2.2 (Conditional traces) It is easy to see that the sequence r1 ∶= (true,∅) ↣ y = 0 ⋅ (x > 2,
∅)↣ y = 0⊗z = 3 ⋅ ⊠ is a conditional trace (composed by three conditional states) that satisfies monotonicity
and consistency. On the contrary, r′1 ∶= (true,∅) ↣ y = 0 ⋅ (x > 2,{y ≥ 0}) ↣ y = 0⊗ z = 3 ⋅ ⊠ is not consistent
since the store of the first conditional state entails the only element in the negative condition of the successive
conditional state, i.e., y = 0 ⊢ y ≥ 0.

Maximal conditional traces can be ordered, by structural induction, as follows: ∀r ∈ CT. ε ⊑ r, ⊠ ⊑ ⊠, and

(η+1 , η−1)↣ c ⋅ r1 ⊑ (η+2 , η−2)↣ c ⋅ r2 ⇐⇒ η+1 ⊢ η+2 ∧ η−2 F η−1 ∧ r1 ⊑ r2

stutt(η−1) ⋅ r1 ⊑ stutt(η−2) ⋅ r2 ⇐⇒ η−2 F η−1 ∧ r1 ⊑ r2

where C F C ′ ⇐⇒ ∀c ∈ C.∃c′ ∈ C ′. c ⊢ c′ 6. Intuitively, a trace r is smaller than another trace r′ if and only
if the conditions of r are more (or equally) restrictive than those of r′. The intuition behind C F C ′ is that
C ′ contains restrictions for the behaviors it represents that are not stronger than those in C. In other words,
C won’t discard more behaviors than C ′ when used as the negative condition of a conditional trace. For
instance, {x > 20} F {x > 10}, but {x > 20, y > 0} /F {x > 20} since, due to the constraint y > 0, a conditional
state with the latter set as negative condition might admit behaviors not admitted by one using the former
set.

The order defined between maximal traces can be extended over sets M1,M2 ⊆ CT as M1 ⊑ M2 ⇐⇒
∀r1 ∈ M1 ∃r2 ∈ M2. r1 ⊑ r2. This relation induces the equivalence relation M1 ≡ M2 ⇐⇒ M1 ⊑ M2 ∧M2 ⊑
M1. We abuse notation and denote the quotient of ⊑ over equivalence classes with the same symbol. In
the following, we use non-empty maximal conditional trace sets modulo ≡ and denote their class by C.
(C, ⊑, ⊔, ⊓, [CT]≡, {ε}) is a complete lattice, where M1 ⊔M2 is the equivalence class of set union and
M1 ⊓M2 is the set of maximal conditional traces such that each trace is less or equal than both a trace in
M1 and a trace in M2 (i.e., it represents the intersection of the behaviors represented by M1 and M2).

The concrete semantics built on domain C is based on a semantics evaluation function AJAKI which,
given an agent A and an interpretation I , builds the conditional traces associated to A. Such concrete
denotational semantics is the basis of the abstract denotational semantics in Section 3, which is actually
obtained just by replacing concrete semantics operations by their corresponding abstract versions (and thus
the structure of their definition is the same). The interpretation I is a function which associates to each
process symbol a set of maximal conditional traces “modulo variance”.

Definition 2.3 (Interpretations) Let PC ∶= {p(Ð→x) ∣ p ∈ Π and Ð→x are distinct variables}. An interpre-
tation is a function I ∶PC → C modulo variance7. The semantic domain I is the set of all interpretations
ordered by the point-wise extension of ⊑.

The semantics for a set of tccp process declarations D is the fixpoint F JDK ∶= lfp(DJDK) of the continuous
operator DJDKI (p(Ð→x)) ∶= ⊔p(Ð→x)∶−A∈D AJAKI .

Example 2.4 (Semantics of our guiding example) The semantics of the lift process defined in Exam-
ple 2.1 is graphically represented in Figure 1. Each branch of the tree corresponds to one of the branches of

6 The F relation induces an equivalence relation on negative conditions (formally, C ≈ C′ ⇐⇒ C F C′ ∧C′ F C) and in the
sequel we implicitly consider negative conditions modulo such equivalence.
7 Two functions I, J ∶PC → C are variants, denoted by I ≅ J , if for each π ∈ PC there exists a variable renaming ρ such that
(I(π))ρ = J(πρ).

6 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

(Dir = [up ∣] ∧CF = [N ∣],∅)↣
Dir = [up ∣ Dir ′] ∧Dir ′ = [down ∣]

I(lift(CF ,Dir ′,N))

(Dir = [up ∣],{Dir = [up ∣]∧
CF = [N ∣]})↣ CF = [F ∣ CF ′]

(Dir = [up ∣] ∧CF = [F ∣ CF ′],∅)↣
CF = [F ∣ CF ′] ∧CF ′ = [F + 1 ∣]

I(lift(CF ′,Dir ,N))

(Dir = [down ∣] ∧CF = [0 ∣],
{Dir = [up ∣],Dir = [up ∣] ∧CF = [N ∣]})↣
Dir = [down ∣ Dir ′] ∧Dir ′ = [up ∣]

I(lift(CF ,Dir ′,N))
(true,{Dir = [up ∣],Dir = [up ∣] ∧CF = [N ∣],
Dir = [down ∣] ∧CF = [0 ∣]})↣ CF = [F ∣ CF ′]

(true,∅)↣ CF = [F ∣ CF ′] ∧CF ′ = [F − 1 ∣]

I(lift(CF ′,Dir ,N))
Figure 1. Representation of the semantics of the lift process.

the nested now agents. The first branch (in left-to-right order) represents the case in which the direction of
the lift is up and the current floor is the last one (N). The second branch is taken when the direction is up
but the current floor is not N (see the negative condition). In that case, the current floor changes from F
to F + 1. The third branch represents the case when the direction of the lift is down and the current floor
is 0, thus the direction is changed to up by adding the constraint Dir ′ = [up ∣]. Finally, the fourth branch
is taken when all the guards are not entailed (see the negative condition, composed by all the guards of the
nested now agents). In that case, the lift moves to the lower floor F − 1. In all the aforementioned cases, a
recursive call is invoked appropriately. These calls are represented in Figure 1 by the triangles labeled with
the interpretation of the process lift .

3. The (finite) abstract semantics for tccp

In this section, we define our over-approximated abstract semantics framework for tccp. It is parametric w.r.t.

a Galois insertion (C, ⊢) −−−−−→Ð→←−−−−−−
τ

τγ (Ĉ, ⊢̂) onto the abstract constraint system ⟨Ĉ, ⪯̂, ⊗̂, ˆfalse, ˆtrue,Var , ∃̂⟩.
As usual, ˆtrue and ˆfalse are the smallest and the greatest abstract constraint, respectively. Moreover ⊢̂
(called abstract entailment) is the inverse relation of ⪯̂. The abstraction function τ replaces exact (concrete)

constraints of C by approximated (abstract) constraints of Ĉ and preserves the concrete order ⊢ (which is
associated to information content) with respect to the corresponding abstract order ⊢̂. The concretization

function τγ associates to each abstract constraint (of Ĉ) the maximal concrete constraint (of C) that is
approximated by it.

We illustrate the abstraction of constraint systems with two examples. The first one is the classical sign
abstraction. The following one is used in Section 4 for the analysis of our guiding example.

Example 3.1 (Sign abstraction) Given the standard constraint system with inequalities over integer
numbers, we abstract it to the abstract constraint system that contains only information about the sign of
the system variables.

We define the abstract constraint system as ⟨Ŝ,⇐,∧, false, true,Var , ∃̂⟩ where Ŝ is the set of finite con-

junctions of {posx,negx, zerox ∣ x ∈ Var}∪{false, true} and ∃̂x is the operation that deletes all atoms referring
to variable x.

The abstract approximation τ is defined by cases as follows:

τ(true) = true τ(false) = false τ(c⊗ c′) = τ(c) ∧ τ(c′) τ(∃xc) = ∃̂x τ(c)

A program analysis framework for tccp based on abstract interpretation 7

false

middlexlowerx upperx

notLowerxnotUpperx

true

x = [F ∣] y = [F + 1∣x] y = [F − 1∣x]
lowerx middley false
middlex notLowery notUppery
upperx false middley
notLowerx notLowery notUppery
notUpperx notLowery notUppery
true true true

Figure 2. Floors lattice and abstract operations

τ(x ≤ a) = {negx if a ≤ 0

true if a > 0
τ(x ≥ a) = {posx if a ≥ 0

true if a < 0
τ(x = a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

posx if a > 0

negx if a < 0

zerox if a = 0

Example 3.2 (Floors abstraction) The concrete constraint system of Example 2.1 can be approximated

by the abstract constraint system ⟨F,⇐,∧, false, true,Var , ∃̃⟩ where F is the set of finite conjunctions of
{middlex, lowerx, upperx, notLowerx, notUpperx ∣ x ∈ Var}∪ {false, true}, ordered as depicted in the Hasse
diagram of Figure 2 and ∃̃x is the operation that deletes all atoms referring to variable x. The table in the
figure shows the definition for the increment and decrement operations in this abstract domain. These are
the only two operations defined in the constraint system (and used in the program).

The abstraction of a stream constraint τ(X = [v∣Y]) approximates the numeric value v following the
natural meaning of constants in the lattice F, that is, lowerx/upperx for v = 0/N and middlex when 0 < v < N .
Constants notLowerx/notUpperx (meaning 0 < v ≤ N and 0 ≤ v < N) are used to abstract (more) precisely
(different) values coming from non-deterministic computations.

The problem of abstracting constraint systems in the ccp paradigm was studied in [FGMP93, ZGL97],
where abstraction meant loss of completeness but not of correctness. However, for the tccp case, due to
the strong synchronization of parallel processes, over-approximation of stores can lead to lose correctness
[AGPV05]. Hence, similarly to [AGPV05, CTV11], given an abstract domain, we use two binary relations
(an over- and an under-approximation relation) over the abstract domain to be able to conservatively ap-
proximate the operational behavior. For positive conditions we need to guarantee to preserve all consistent
constraints (thus over-approximate) while dually, for negative conditions we cannot introduce solutions but
possibly discard some (thus under-approximate). Thanks to this combination, we do not lose concrete traces
in the abstraction process and so we guarantee correctness of the abstract semantics.

The over-approximation (+ between abstract constraints can be defined systematically in terms of ⊗̂
as ∀â, b̂ ∈ Ĉ, â (+ b̂ ⇔ â ⊗̂ b̂ ≠ ˆfalse. This is closely related to the notion of relative-pseudo-complement.
Intuitively, over-approximation holds if there exists the possibility that the entailment holds in the concrete

domain. Namely, â (+ b̂ if τγ(â)⊗ τγ(b̂) ≠ false.8 Note that this is not equivalent to the abstract entailment

(⊢̂) in Ĉ. Relation (+ is, in general, neither transitive nor reflexive.
On the contrary, for the under-approximation (− we need to guarantee that, if it holds, then it also holds

in the concrete. Namely, given two abstract constraints â, b̂ ∈ Ĉ, â (− b̂ ⇐⇒ ∀a, b ∈ C.a ⊢ τγ(â), b ⊢ τγ(b̂)⇒
a ⊢ b. Note that, in general, relation (− is neither reflexive nor symmetric.

We use this relation in order to achieve better precision of the abstract semantics when handling negative
information, i.e., to discard traces that do not correspond with real ones. Obviously, this is a very demanding
notion. However, we have to guarantee correctness, thus we cannot discard a path to construct an abstract
trace if there exists a single possibility (a single concretization) that follows such path. Hence, in general, we
cannot use a less demanding notion.

8 Recall that, the concretization function τγ is a part of the Galois insertion between constraint systems and that it is the
adjoint of the abstraction function.

8 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

Example 3.3 (Approximation relations for Example 3.1) For the sign abstraction, we have that posx (+
negx since τγ(posx)⊗τγ(negx) = x = 0. For instance, if a positive value (≥ 0) for x is required (by a condition)
in the concrete domain (like x = 0), and the current abstract store is negx, the over-relation accepts negx
since x could be 0.

The under-approximation is â (− b̂ ⇔ (â = false) ∨ (â = zerox ∧ b̂ = zerox). As already mentioned, in
contrast to (+, relation (− is used to discard traces. For instance, given the now x = 0 then A1 else A2 agent,
if the current abstract store is zerox and thanks to this under-approximation, we are able to detect that the
value of x cannot be different from zero and then our semantics does not include spurious traces representing
the else branch.

Example 3.4 (Approximation relations for Example 3.2) By observing Figure 2, we see, for instance,
that middlex /(+ upperx and lowerx /(+ notLowerx, but notLowerx (+ notUpperx and middlex (+ notLowerx.
We also observe clearly that the relation is not transitive. For instance, lowerx (+ notUpperx, notUpperx (+
middlex but lowerx /(+ middlex.

For this example, the under-approximation relation is â (− b̂⇔ (â = false)∨(â = lowerx∧ b̂ = lowerx)∨(â =
upperx∧ b̂ = upperx). Observe that, in this case, relation (− is not reflexive. For instance, middlex /(− middlex
since constraint middlex is too imprecise to discard traces. For example, assume that the system asks whether
the current floor CF is the second one, and the abstract store contains value middleCF . It is clear that we
cannot exactly know the current lift floor and, in consequence, we have to take into account both possibilities,
i.e., the case when CF is 2, and the case when it is not.

It is worth remarking that the abstract entailment relation ⊢̂ and the over-relation (+ are supported by
different intuitions. Let us illustrate this by using the sign abstraction domain of Example 3.1. Whereas the
first relation is the partial order of the lattice (for instance, we have that τ(x ≥ 5) ⊬̂ τ(x = 0)), the second
one checks, in some way, whether there exist two concretizations of the abstract constraints that are related
by ⊢ (for instance, we have that τ(x ≥ 5) (+ τ(x = 0), since x = 0 ⊢ τγ(τ(x ≥ 5))).

3.1. The abstract semantic domain

The abstract denotational semantics A is formed by abstract conditional traces, which (essentially) are con-
ditional traces (recalled in Section 2.1) where conditions and stores are formed by approximated constraints
instead of concrete ones.

Definition 3.5 (Abstract conditions) Let Ĉ be an Abstract Cylindric Constraint System. Abstract con-

ditions over Ĉ are pairs (η̂, η̌) where

● η̂ ∈ Ĉ is called abstract positive condition,

● η̌ ∈ N̂CĈ is called abstract negative condition, and

● N̂CĈ ∶= ℘(Ĉ)/
≈
, where, for each pair C,C ′ ⊆ Ĉ, C ≈ C ′ ⇐⇒ C F̂ C ′ ∧ C ′ F̂ C and C F̂ C ′ ⇐⇒ ∀c ∈

C.∃c′ ∈ C ′. c ⊢̂ c′.

We simply denote N̂CĈ by N̂C when clear from the context. Moreover, we abuse notation and denote F̂/
≈

simply by F̂. We also define [C]≈ ⊎̂ [C ′]≈ ∶= [C ∪C ′]≈.
The conjunction of two abstract conditions η̃1 = (η̂1, η̌1) and η̃2 = (η̂2, η̌2) is defined as η̃1 ⊗̂ η̃2 ∶= (η̂1 ⊗̂

η̂2, η̌1 ⊎̂ η̌2).

An abstract condition (η̂, η̌) is consistent when η̂ ≠ ˆfalse and, moreover, ∀η′ ∈ η̌.η̂ /(− η′. We denote ∆̂Ĉ
the set of abstract consistent conditions.

An abstract store ĉ ∈ Ĉ is consistent with η̃ = (η̂, η̌) ∈ ∆̂Ĉ, written ĉ ≫̂ η̃, if ĉ⊗̂ η̂ ≠ ˆfalse and ∀η′ ∈ η̌.ĉ /(− η′.
Moreover, we say that ĉ satisfies η̃, written ĉ ⊫̂ η̃, when ĉ ⊢̂ η̂ and ∀η′ ∈ η̌, ĉ /(− η′.

We define the existential quantification on conditions as ∃̂x η̃ ∶= (∃̂x η̂, ∃̂x η̌)9.

Finally, we define τ̄ ∶ ℘(C)→ N̂C as τ̄(C) ∶= [{τ(c) ∣ c ∈ C}]≈.

9 We abuse notation and, given a set of abstract constraints C, we write by ∃̂xC the natural extension of ∃̂ to sets.

A program analysis framework for tccp based on abstract interpretation 9

Constraint abstractions τ and τ̄ enjoy some interesting properties. Namely, given c ∈ C and a (concrete)
condition (η+, η−),

(η+, η−) is consistentÔ⇒ (τ(η+), τ̄(η−)) is (abstractly) consistent (3.1)

c≫ (η+, η−)Ô⇒ τ(c) ≫̂ (τ(η+), τ̄(η−)) (3.2)

c⊫ (η+, η−)Ô⇒ τ(c) ⊫̂ (τ(η+), τ̄(η−)) (3.3)

Those properties follow directly from the definition of the concrete and abstract relations and from the
Galois insertion between the concrete and the abstract constraint system.

Definition 3.6 (Abstract conditional traces) An abstract conditional trace is a (possibly infinite) se-
quence t̂1⋯t̂n⋯ of abstract conditional states, which can be of three forms.

Abstract conditional store: a pair η̃ ↣ ĉ, where η̃ ∈ ∆̂Ĉ and ĉ ∈ Ĉ;

Abstract stuttering: the construct stutt(η̌), with η̌ ∈ N̂C;

Abstract end of a process: the construct ⊠, which cannot be followed by other abstract conditional states.

The empty sequence of abstract conditional states is denoted by ε.
Abstract conditional traces must respect the following properties:

(monotonicity) for each t̂i = η̃i ↣ ĉi and t̂j = η̃j ↣ ĉj such that j ≥ i, ĉj ⊢̂ ĉi and

(consistency) for each t̂i = η̃i ↣ ĉi and t̂i+1 = (η̂i+1, η̌i+1)↣ ĉi+1, ∀η′ ∈ η̌i+1, ĉi /(− η′.

Definition 3.7 (Abstract semantic domain) We denote the set of all abstract conditional traces for the

abstract constraint system Ĉ by ATĈ, or simply AT when clear from the context. We (partially) order

abstract conditional traces by their information content as ∀r ∈ AT. ε t r, ⊠ t ⊠, and (∀ĉ, η̂1, η̂2 ∈ Ĉ,

∀η̌1, η̌2 ∈ N̂C, ∀r1, r2 ∈ AT)

(η̂1, η̌1)↣ ĉ1 ⋅ r1 t (η̂2, η̌2)↣ ĉ2 ⋅ r2 ⇐⇒ η̂1 ⊢̂ η̂2 ∧ η̌2 F̂ η̌1 ∧ ĉ1 ⊢̂ ĉ2 ∧ r1 t r2

stutt(η̌1) ⋅ r1 t stutt(η̌2) ⋅ r2 ⇐⇒ η̌2 F̂ η̌1 ∧ r1 t r2

We extend t to sets of abstract conditional traces A1,A2 as A1 ≤ A2 ⇐⇒ ∀r1 ∈ A1∃r2 ∈ A2.r1 t r2.
Moreover, we define A1 ≡ A2 ⇐⇒ A1 ≤ A2 ∧A2 ≤ A1. In the sequel, we abuse notation and denote ≤/

≡
as ≤.

In the following, we use sets of non-empty abstract conditional traces modulo ≡ and denote their class by
A. (A, ≤, ⋁, ⋀, [AT]≡, {ε}) is a complete lattice, where A1 ∨A2 = [A1 ∪A2]≡ and A1 ∧A2 = [{r ∈ AT ∣ ∃r1 ∈
A1. r t r1, ∃r2 ∈ A2. r t r2}]≡.

We can now define the abstraction of conditional traces.

Definition 3.8 (Conditional trace abstraction) We define the abstraction function ατ ∶ C → A as the
extension to sets (modulo ≡) of function ατ ∶ CT → AT defined as follows. Given a conditional trace
t ∈ CT, ατ(ε) = ε, ατ(⊠) = ⊠, ατ((η+, η−) ↣ c ⋅ t′) = (τ(η+), τ̄(η−)) ↣ τ(c) ⋅ ατ(t′) and ατ(stutt(C) ⋅ t′) =
stutt(τ̄(C)) ⋅ ατ(t′). The concretization function γτ that, given a set of abstract traces, produces all the
concrete traces that can be approximated by it, is defined as the adjoint of ατ .

For example, given the trace r = stutt({X > 5}) ⋅ (X > 6,{Y < 0}) ↣ X > 9 for the sign abstraction τ of
Example 3.1 we have ατ(r) = stutt({posX}) ⋅ (posX ,{negY })↣ posX .

3.2. The abstract semantics

The Galois insertion defined before can be naturally lifted to the domain of interpretations. We denote as
IA ∶= [PC → A] the abstract counterpart of I.

The abstract semantics for a tccp program is based on the evaluation function for tccp agents shown
in the following Definition 3.18. First, we need some auxiliary operators and properties. For the sake of
readability, some (correctness) results together with their proofs can be consulted in the appendix.

To propagate information when composing traces, we use two propagation operators. The abstract

10 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

(strong) propagation operator ↡̂ is a partial function AT × Ĉ → AT that instantiates an abstract condi-
tional trace with a given abstract constraint and checks the consistency of the new information with the
conditional states in the trace. This information needs to be propagated to all conditional states (including

future states) in order to maintain the monotonicity of the store. Following these intuitions, operator r↡̂ĉ
propagates ĉ in the stores and conditions occurring in r, whereas the abstract weak propagation operator r↓̂ĉ
propagates ĉ only in the conditions.

Definition 3.9 (Abstract propagation operator) The abstract propagation partial function ↡̂ ∶ AT ×
Ĉ→AT is defined by structural induction as: ε↡̂ĉ = ε, ⊠↡̂ĉ = ⊠ and

((η̂, η̌)↣ d̂ ⋅ r′)↡̂ĉ = {(η̂ ⊗̂ ĉ, η̌)↣ d̂ ⊗̂ ĉ ⋅ (r′↡̂ĉ) if ĉ ≫̂ (η̂, η̌), d̂ ⊗̂ ĉ ≠ ˆfalse

(η̂ ⊗̂ ĉ, η̌)↣ ˆfalse ⋅ ⊠ if ĉ ≫̂ (η̂, η̌), d̂ ⊗̂ ĉ = ˆfalse

(stutt(η̌) ⋅ r′)↡̂ĉ = stutt(η̌) ⋅ (r′↡̂ĉ) if ∀η′ ∈ η̌. ĉ /(− η′

It is worth noting that if η̂ ⊗̂ ĉ = ˆfalse, then the condition is not consistent, thus no conditional trace is
produced.

Example 3.10 (Abstract propagation operator) Given r = (posx,{zeroy}) ↣ posy ⋅ ⊠, by definition,

r↡̂zerox
= (zerox,{zeroy})↣ posy⊗̂zerox⋅⊠. On the contrary, r↡̂zeroy

is not defined since zeroy /̂≫ (posx,{zeroy}).

Definition 3.11 (Abstract weak propagation operator) The abstract weak propagation partial func-

tion ↓̂ ∶ AT × Ĉ→AT is defined by structural induction as: ε↓̂ĉ = ε, ⊠↓̂ĉ = ⊠ and

((η̂, η̌)↣ d̂ ⋅ r′)↓̂ĉ = (ĉ ⊗̂ η̂, η̌)↣ d̂ ⋅ (r′↓̂ĉ) if ĉ ≫̂ (η̂, η̌)
(stutt(η̌) ⋅ r′)↓̂ĉ = stutt(η̌) ⋅ (r′↓̂ĉ) if ∀η′ ∈ η̌. ĉ /(− η′

Analogously to ↡̂, note that if η̂ ⊗̂ ĉ = ˆfalse, then the condition is not consistent, thus no conditional trace is

produced by r↓̂ĉ.

Example 3.12 (Abstract propagation operator) Given the same r = (posx,{zeroy}) ↣ posy ⋅ ⊠ as in

the Example 3.10, r↓̂zerox = (zerox,{zeroy}) ↣ posy ⋅ ⊠. Also the weak propagation of zeroy (r↓̂zeroy) is not
defined.

The ∥̂ operator composes two traces by consistently merging their conditions and stores. To this end, it uses
the two propagation operators in order to merge the information from the traces. Information in the stores
is (strongly) propagated, whereas information in the conditions is weakly propagated.

Definition 3.13 (Abstract parallel composition) The abstract parallel composition partial operator

∥̂∶AT × AT → AT is the commutative closure of the following partial operation defined by structural in-

duction as: r ∥̂ ε ∶= r, r ∥̂ ⊠ ∶= r and

(stutt(η̌1) ⋅ r1) ∥̂ (stutt(η̌2) ⋅ r2) ∶= stutt(η̌1 ⊎̂ η̌2) ⋅ (r1 ∥̂ r2)

Moreover, if η̃1 ⊗̂ η̃2 is consistent , then

(η̃1 ↣ ĉ1 ⋅ r1) ∥̂ (η̃2 ↣ ĉ2 ⋅ r2) ∶= {η̃1 ⊗̂ η̃2 ↣ ĉ1 ⊗̂ ĉ2 ⋅ ((r1↓̂η̂2 ↡̂ĉ2) ∥̂ (r2↓̂η̂1 ↡̂ĉ1)) if ĉ1 ⊗̂ ĉ2 ≠ ˆfalse

η̃1 ⊗̂ η̃2 ↣ ˆfalse ⋅ ⊠ if ĉ1 ⊗̂ ĉ2 = ˆfalse,

Finally, if ∀η′ ∈ η̌2. η̂1 /(− η′, then

((η̂1, η̌1)↣ ĉ1 ⋅ r1) ∥̂ (stutt(η̌2) ⋅ r2) ∶= (η̂1, η̌1 ⊎̂ η̌2)↣ ĉ1 ⋅ (r1 ∥̂ (r2↓̂η̂1 ↡̂ĉ1))

Clearly, by definition, ∥̂ is commutative. Moreover, because of ⊗̂ associativity, ∥̂ is also associative. It is worth
noting that if the propagated constraint is in contradiction with a condition of trace r, then the parallel
composition is not defined on that r.

A program analysis framework for tccp based on abstract interpretation 11

Example 3.14 (Parallel operator) Given r̂1 = (posx,∅) ↣ posy ⋅ ⊠ and r̂2 = stutt({posx,posy}) ⋅ (ˆtrue,

∅)↣ posx ⋅⊠, the parallel composition r̂1 ∥̂ r̂2 = (posx,{posx,posy})↣ posy ⋅(posx ⊗̂posy,∅)↣ posx ⊗̂posy ⋅⊠.
Following the definition, the first conditional state corresponds to that of r̂1 updated with the negative
condition of the stuttering conditional state. Then, the information in the first conditional state of r̂1 is
propagated to the rest of conditional trace of r̂2. Note that since the second conditional state of r̂2 is the
end-of-process mark, no other merges are needed.

We remark the fact that the initial condition in the resulting abstract conditional trace is consistent since
posx /(− posx. This corresponds to the idea of not discarding abstract traces unless we are sure that they
do not admit concrete real behaviors. Let us illustrate this issue. Consider the concrete traces r1 = (x ≥ 0,
∅) ↣ y = 1 ⋅ ⊠ and r2 = stutt({x ≥ 2, y ≥ 2}) ⋅ (true,∅) ↣ x ≥ 0 ⋅ ⊠ which are in the concretization of r̂1 and
r̂2, respectively. Their (concrete) parallel composition is a consistent trace, i.e., (x ≥ 0,{x ≥ 2, y ≥ 2}) ↣ y =
1 ⋅ (x ≥ 0⊗ y = 1,∅)↣ x ≥ 0 ⊗̂ y = 1 ⋅ ⊠.

Let us now show the (natural) loss of precision of the abstract domain. Also r′1 = (x = 1,∅)↣ y = 1 ⋅⊠ and
r′2 = stutt({x ≥ 0, y ≥ 0}) ⋅ (true,∅) ↣ x ≥ 0 ⋅ ⊠ are in the concretization of r̂1 and r̂2, respectively. However
this time their (concrete) parallel composition is not defined because the first conditional state would be
(x = 1,{x ≥ 0, y ≥ 0})↣ y = 1 but since x = 1 ⊢ x ≥ 0, the condition is not consistent.

The abstract hiding operator hides the information regarding some given variables in a trace.

Definition 3.15 (Abstract hiding operator) The abstract hiding operator is the partial function ∃̂∶ ℘(Var)×
AT →AT defined by structural induction as:

∃̂V r ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(∃̂V η̂, ∃̂V η̌)↣ ∃̂V ĉ ⋅ ∃̂V r′ if r = (η̂, η̌)↣ ĉ ⋅ r′

stutt(∃̂V η̌) ⋅ ∃̂V r′ if r = stutt(η̌) ⋅ r′
r if r = ε or r = ⊠

where, for all ĉ ∈ Ĉ, ∃̂{x1,...,xn} ĉ ∶= ∃̂x1 ⋯∃̂xn ĉ and, for all C ∈ N̂C, ∃̂V C ∶= {∃̂V ĉ ∣ ĉ ∈ C}.

We abuse notation and write ∃̂x r for ∃̂{x} r.

Definition 3.16 (Abstractly self-sufficient and x-self-sufficient conditional trace) An abstract trace
r ∈ AT is said to be abstractly self-sufficient if the first condition is (ˆtrue,∅) and, for each t̂i = (η̂i, η̌i)↣ ĉi
and t̂i+1 = (η̂i+1, η̌i+1)↣ ĉi+1, ĉi ⊫̂ ηi+1. In other words, each abstract store (abstractly) satisfies the successive
abstract condition.

Moreover, r is abstractly self-sufficient w.r.t. x ∈ Var (x-self-sufficient) if ∃̂Var∖{x} r is self-sufficient. In
other words, for abstractly self-sufficient conditional traces, no additional information (from other agents) is
needed in order to complete the computation.

Example 3.17 (Abstractly self-sufficient and x-self-sufficient conditional trace) Let us consider the
abstract constraint system of Example 3.2. The abstract conditional trace r̂ = (ˆtrue,∅) ↣ posx ⋅ (zerox,

∅)↣ zerox ⊗̂ posy ⋅ ⊠ is not self-sufficient since posx /̂⊫ (negx,∅).
Now consider a variation where we add the information zerox to the stores, namely r̂′ ∶= (true,∅) ↣

posx⊗̂zerox ⋅(zerox,∅)↣ zerox⊗̂posy ⋅⊠. It is easy to see that r̂′ is a self-sufficient conditional trace, essentially

because we add enough information in the first store to satisfy the second condition, i.e., zerox ⊫̂ (zerox,∅).
Moreover, r̂′ is also x-self-sufficient since ∃̂Var∖{x} r̂

′ = (true,∅) ↣ posx ⊗̂ zerox ⋅ (zerox,∅) ↣ zerox ⋅ ⊠,
which is a self-sufficient trace.

Now we are ready to define the semantics evaluation function for agents, which is the core of the abstract
semantics. As already said, this definition is structurally identical to the definition of the concrete evaluation
function.

Definition 3.18 (Abstract Semantics Evaluation Function for Agents) Given a tccp agent A and
an (abstract) interpretation Iα ∈ IA, we define by structural induction the semantics evaluation AαJAKIα ∈ A
as follows.

AαJskipKIα ∶= {⊠} (3.4a)

AαJtell(c)KIα ∶= {(ˆtrue,∅)↣ τ(c) ⋅ ⊠} (3.4b)

12 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

AαJA ∥ BKIα ∶=⊔{rA ∥̂ rB ∣ rA ∈ AαJAKIα , rB ∈ AαJBKIα} (3.4c)

AαJ∃xAKIα ∶=⊔{ ∃̂x r ∣ r ∈ AαJAKIα , r is abstractly x-self-sufficient} (3.4d)

AαJp(Ð→x)KIα ∶= {(ˆtrue,∅)↣ ˆtrue ⋅ r ∣ r ∈ Iα(p(Ð→x))} (3.4e)

AαJ
n

∑
i=1

ask(ci)→ AiKIα ∶=⊔{stt ⋅ . . . ⋅ stt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⋅r ∣m ∈ N, r ∈M} ⊔ {stt ⋅ . . . ⋅ stt ⋅ . . .} (3.4f)

where stt ∶= stutt([τ̄({c1, . . . , cn})]≡) and M = ⊔{(τ(ci),∅)↣ ˆtrue ⋅ (r′↓̂τ(ci)) ∣1 ≤ i ≤ n, r′ ∈ AαJAiKIα}

AαJnow c then A else BKIα ∶= {(τ(c),∅)↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AJAKIα} ⊔

⊔{(τ(c) ⊗̂ η̂, η̌)↣ d̂ ⋅ (r↓̂τ(c)) ∣ (η̂, η̌)↣ d̂ ⋅ r ∈ AαJAKIα , ∀η′ ∈ η̌, τ(c) ⊗̂ η̂ /(− η′} ⊔

⊔{(τ(c), η̌)↣ ˆtrue ⋅ r↓̂τ(c)) ∣ stutt(η̌) ⋅ r ∈ AαJAKIα ,∀η′ ∈ η̌, τ(c) /(− η′} ⊔

⊔{(ˆtrue,{τ(c)})↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AαJBKIα} ⊔

⊔{(η̂, η̌ ⊎̂ {τ(c)})↣ d̂ ⋅ r ∣ (η̂, η̌)↣ d̂ ⋅ r ∈ AαJBKIα , η̂ /(− τ(c)} ⊔
⊔{(ˆtrue, η̌ ⊎̂ {τ(c)})↣ ˆtrue ⋅ r ∣ stutt(η̌) ⋅ r ∈ AαJBKIα} (3.4g)

The semantics for a set of process declarations D is the fixpoint FαJDK ∶= lfp(DαJDK) of the continuous
operator DαJDKIα(p(Ð→x)) ∶= ⋁p(Ð→x)∶−A∈DAαJAKIα .

We explain in detail some significant cases. The semantics of the tell(c) agent (3.4a) has a trace with two
conditional states: the first one with condition (ˆtrue,∅), which is the less demanding condition since c must
be added to the store in any case (in the next time instant). Next, the computation terminates with the
end-of-process symbol ⊠. The parallel and hiding cases are defined in terms of the corresponding auxiliary
operators, whereas the case of a process call p(Ð→x) is the abstract behavior of the process specified by the
interpretation Iα (i.e., r ∈ Iα(p(Ð→x))) but starting at the following time instant (since in tccp process calls
introduce a delay of one time unit).

The case for the non-deterministic choice deserves special attention since, without the under-approximation
relation, due to suspension, concrete behaviors might be lost, which would make the abstract semantics
incomplete and the subsequent analysis unsound. Intuitively, we need to guarantee that, in the abstract
semantics, we keep a conditional trace modeling suspension. The abstract conditional trace that models
suspension will be discarded just in case that it becomes inconsistent when merged (by means of the par-
allel operator) with another (abstract) conditional trace. Thus, the semantics for the (non-deterministic)

choice (3.4f) collects, for each guard ci, a conditional trace of the form (τ(ci),∅) ↣ ˆtrue ⋅ (r↓̂τ(ci)). This
trace requires that τ(ci) has to be satisfied by the current store. Then, the constraint τ(ci) is propagated
to the conditions in trace r (the continuation of the computation, which belongs to the semantics of Ai).
Furthermore, we collect the stuttering traces, which correspond to the case when the computation suspends.
These traces are of the form stt ⋅ . . . ⋅ stt ⋅ r, where r is one of the traces above, plus the infinite stuttering
behavior stt ⋅ . . . ⋅ stt ⋅

The definition (3.4g) for the conditional agent now c then A else B is similar to the previous case. However,
since the now construct must be instantaneous, in order to correctly model the timing of the agent, we have
six cases depending on the possible forms of the first conditional state of the semantics of A (respectively
B) and on the fact that the guard c is satisfied or not in the current time instant.

Abstract semantic operators Aα and Dα are correct abstractions of A and D, as stated in the theorem
below. Hence, abstract interpretation theory ensures that FαJDK is a correct approximation of F JDK.

Theorem 3.19 Given an interpretation Iα ∈ IA and p(Ð→x) ∈ PC,

ατ(AJAKγτ (Iα)) ≤ AαJAKIα (3.5)

ατ(DJDKγτ (Iα)(p(Ð→x))) ≤ DαJDKIα(p(Ð→x)) (3.6)

Proof sketch. The complete proof of this result can be found in Appendix A. It proceeds by structural
induction on the form of the agents by applying ατ to the various cases of the concrete agent evaluation
and, by correctness of ατ , one obtains as over-approximation the corresponding cases of the definition of the
abstract version. In particular, when the abstraction is applied to concrete constraints, the correctness is

A program analysis framework for tccp based on abstract interpretation 13

guaranteed by our assumptions on the approximation relations (+ and (−. When the abstraction is applied to
concrete auxiliary operators, the proof relies on their correctness, which is stated by means of four lemmas,
also included in the appendix.

3.3. From infinite to finite semantics

Since the domain of abstract conditional traces is not Noetherian (i.e., it admits infinite increasing chains),
the computation of the abstract least fixpoint does not necessarily converge in finite time. Our solution is to
use a widening operator [BHRZ05, CC77] that ensures convergence to an over-approximation of the abstract
fixpoint in a finite number of steps.

In the following, we use a representation of sets of abstract conditional traces in terms of conditional
graphs. These graphs are enriched with the information about the process calls, which is necessary to identify
the part of the graph corresponding to each iteration of DαJDK at the moment of applying the widening
operator.

Definition 3.20 A conditional graph G is a triple (Init ,Nodes,Edges) where

● Init is the set of initial nodes, each one labeled with a (unique) process symbol, denoted by init(G)
● Nodes is a set of nodes, each one containing a conditional step, and

● Edges is a set of edges between nodes that can be of two kinds: either simple edges n → n′, or edges of

the form n
ρ
Ô⇒
p
n′ representing a call to process p with variable renaming ρ. Edges represent the passage

of one time unit.

G denotes the set of all conditional graphs. Moreover, n /→ denotes a node n that has no outgoing edges.

We define the function paths ∶G → A which, given a conditional graph, returns the set of all paths of

the graph. When an arc of the form
ρ
Ô⇒
p

is traversed, a variant with fresh variables in the co-domain of the

renaming ρ is applied to the nodes that follow in the path and the information of the store is propagated
to the positive conditions, similarly to what happens when a process call is done. The order relation over
graphs ≼ is defined as G1 ≼ G2 ⇐⇒ paths(G1) ≤ paths(G2). (G, ≼, ⋎, ⋏, ⊺G, �G) is a complete lattice where
⋎ is the least upper bound operator that joins a set of graphs by combining all the sequences that have a
prefix in common in the same path, ⋏ is the greatest lower bound operator that returns the common parts
of a set of graphs, �G is the graph composed only of an empty initial node and ⊺G is the graph such that
paths(⊺G) = AT.

The semantics of a tccp process p(Ð→x) can be seen as a conditional graph G with the initial node labeled
with p and such that paths(G) = FαJDK(p(Ð→x)). The graph for the process p(Ð→x) is built by linking the
initial node of p to the nodes corresponding to the first conditional states of the semantics of an agent A such
that p(Ð→x) ∶ −A ∈ D. The rest of the graph is built following the denotational semantics of Definition 3.18:
each conditional state becomes a node in the graph and it is connected to the following one by a simple edge.

When a call to a process q(Ð→y) is found and the declaration q(Ð→z) ∶− A′ is in D, an arrow
[z⃗/y⃗]
ÔÔ⇒
q

is added,

thus linking the current node to the graph labeled with q by using the variable renaming [z⃗/y⃗].
Now we are ready to define our widening operator. Widening operators provide an efficacious solution

to the convergence problem by over-approximating infinite increasing chains in a finite number of steps. A
widening operator [BHRZ05, CC77] on the lattice (L, ≤) is a partial function ▽∶L ×L→ L satisfying:

(covering) for all x, y ∈ L such that x ≤ y, x▽ y is defined and y ≤ x▽ y; and

(termination) for each increasing chain x0 ≤ x1 ≤ . . . the chain defined as y0 = x0 and yi+1 = yi▽xi+1 is
not strictly increasing.

We propose a widening operator10 ▽ that looks for repeated patterns in consecutive iterations of DαJDK
and converges, in a finite number of steps, in a conditional graph that represents an over-approximation of

10 In defining our widening operator, we follow the approach of [BHRZ05] instead of the original in [CC77].

14 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

t̂1

ρ1

t̂

t̂nρ′1

(a) G1

t̂1

ρ1

t̂

t̂′1

ρ2

t̂n

t̂′n

ρ′1

(b) G2

t̂1

ρ1

t̂

t̂nρ′1

ρ2

(c) G1▽G2

Figure 3. The graph widening behavior.

the abstract fixpoint Fα. In the sequel, we abuse in notation and write t̂
ρ2Ô⇒
p
t̂′1 → ⋅ ⋅ ⋅ → t̂′n to denote the set

of the edges occurring in this path, i.e., {t̂
ρ2Ô⇒
p
t̂′1, t̂

′
1 → t̂′2 . . . , t̂

′
n−1 → t̂′n}.

Definition 3.21 (Graph widening) Let G1,G2 ∈ G such that G1 ≼ G2. The graph widening of G1 w.r.t.
G2 is defined as G1▽G2 ∶= G1 ⋎ (I,N,E) where I ∶= init(G2), N is the set of nodes that occur in the set of
edges E, and

E ∶={t̂
ρ2Ô⇒
p
t̂1 ∣ it exists a subpath in G2 of the form t̂

ρ2Ô⇒
p
t̂′1 . . . t̂

′
n /→ s.t. an edge Ô⇒

p
does not occur in

t̂′1 . . . t̂
′
n and it exists a subpath in G1 of the form

ρ1Ô⇒
p
t̂1 . . . t̂n

ρ′1Ô⇒
p

, s.t. an edge Ô⇒
p

does

not occur in t̂1 . . . t̂n and ∀1 ≤ i ≤ n ρ1(t̂i) = ρ2(t̂′i)} ∪

⋃{t̂
ρ2Ô⇒
p
t̂′1 → ⋅ ⋅ ⋅→ t̂′n ∣ it exists a subpath in G2 on the form t̂

ρ2Ô⇒
p
t̂′1 . . . t̂

′
n /→ s.t. in t̂′1 . . . t̂

′
n it does

not occur an edge Ô⇒
p

and it does not exist a subpath in G1 of the form
ρ1Ô⇒
p
t̂1 . . . t̂n

ρ′1Ô⇒
p
, s.t.

in t̂1 . . . t̂n it does not occur an edge Ô⇒
p

and ∀1 ≤ i ≤ n ρ1(t̂i) = ρ2(t̂′i)}

At each iteration, the widening checks if a suffix r of a path b in the graph of a process p (which corresponds
to the trace produced at the last iteration of p) has already appeared in a previous iteration of p (modulo
variables renaming). In this case, it adds an edge, labeled with the necessary variable renaming ρ2, from the
node t̂ precedent to the pattern r to the first node of the equivalent pattern found in the previous widening
iteration (first case of Definition 3.21). Otherwise, if no equivalent pattern (modulo variable renaming)
is found, the path b is added to the graph (second case of Definition 3.21). Figure 3 shows a graphical
representation of the graph widening behavior. To improve readability, in the figure we assume that all
process calls involve the same process, thus we just include the renaming for variables in the edges.

Lemma 3.22 If the underlying abstract Cylindric Constraint System is Noetherian, then the operator ▽ is
a widening operator on G.

Proof sketch. The covering property is a consequence of the fact that the branches of G2 that are not included
by the widening are already present in G1 modulo variable renaming; that is the reason why a direct edge
is added from the last node before the repetition to the equivalent branch detected in G1.

Termination of the widening is a consequence of the properties of the abstract constraint systems and
of the finiteness of the program syntax. By definition, just a finite number of conditional steps can be
computed, thus iteration’s length is finite. Furthermore, when a repeated pattern is detected, that (possibly
cyclic) branch is not further expandable.

Because of Lemma 3.22 and the results in [BHRZ05] is guaranteed that, for any tccp set of declarations
D, the chain

I0 = {ε} Ii+1 = {Ii if DαJDKIi ≤ Ii
Ii▽ (Ii ∨DαJDKIi) otherwise

A program analysis framework for tccp based on abstract interpretation 15

lift

(Dir = [up ∣] ∧CF = [N ∣],∅)↣
Dir = [up ∣ Dir ′] ∧Dir ′ = [down ∣]

(Dir = [up ∣],{Dir = [up ∣]∧
CF = [N ∣]})↣ CF = [F ∣ CF ′]

(Dir = [up ∣] ∧CF = [F ∣ CF ′],∅)↣
CF = [F ∣ CF ′] ∧CF ′ = [F + 1 ∣]

(Dir = [down ∣] ∧CF = [0 ∣],
{Dir = [up ∣],Dir = [up ∣] ∧CF = [N ∣]})↣
Dir = [down ∣ Dir ′] ∧Dir ′ = [up ∣]

(true,{Dir = [up ∣],Dir = [up ∣] ∧CF = [N ∣],
Dir = [down ∣] ∧CF = [0 ∣]})↣ CF = [F ∣ CF ′]

(true,∅)↣ CF = [F ∣ CF ′] ∧CF ′ = [F − 1 ∣]

Dir/Dir ′

Dir/Dir ′

Dir/Dir ′

Dir/Dir ′

CF/CF ′

CF/CF ′
CF/CF ′

CF/CF ′

Figure 4. Graph representation of the abstract semantics of the lift process.

converges to a graph which is a correct approximation of the abstract semantics in a finite number of steps.
That graph contains an initial node for each process declaration such that the subgraph reachable from
the initial node represents the behaviors of the corresponding process. Subgraphs corresponding to different
processes are linked by edges with renamings when process calls occur.

Example 3.23 Figure 4 shows the conditional graph corresponding to the abstract semantics of the lift
process. We abstract streams of the concrete Constraint System by posing a depth limit for streams, i.e.,
we keep the first k values of a stream, and then we use the top of the domain. All other constraints are
abstracted to themselves. The resulting abstract Constraint System is thus finite.

Due to the application of the widening operator it can be noted how the recursive calls (represented as
triangles in Figure 1) are replaced in Figure 4 with the (set of) arcs pointing to the possible continuations
of the computation.

4. Abstract analysis with an over-approximation

The abstract semantics we have proposed so far is an over-approximation of the concrete semantics. Thus,
it allows us to check universal properties, i.e., properties that all the possible behaviors of the system must
satisfy. For instance, it is possible to analyze some temporal properties such as safety (i.e., something bad
never happens) or liveness (i.e., something good eventually happens) or to check if a program never suspends.
In order to check whether some invariant property is satisfied by our program, it is necessary to check if
every node of the graph respects this property. The properties that can be checked strongly depend on the
abstraction of the constraint system. If we want to guarantee that a given abstract constraint ĉ never holds
in a computation, we need to check that for every node, either its store is in contradiction with ĉ, or its
negative condition contains a store that satisfies ĉ or the positive condition η̂ is in contradiction with ĉ (i.e.,

η̂ ⊗̂ ĉ = ˆfalse). This ensures that, for every possible input, ĉ is never produced in the computation.
Similarly, in order to check if an abstract constraint ĉ is always entailed by the current store, it is sufficient

to check if for each conditional step occurring in the graph of the form (η̂, η̌) ↣ d̂, the positive condition

merged with the store entails ĉ (i.e., η̂ ⊗̂ d̂ ⊢̂ ĉ). This ensures that for every possible initial constraint, ĉ is
entailed by the store.

Example 4.1 We may be interested in proving several invariant properties on the lift process in Exam-
ple 2.1. For instance, we can try to verify that “the current floor stream CF never gets a negative number”.
To this end, we check all the conditions in the graph in Figure 4, and since we find (at least) a node that
does not contradict that CF is negative (see the first node of the right branch), we conclude that it cannot
be ensured that the lift process respects this safety property. As a matter of fact, provided we start the

16 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

computation with an initial state where CF is initialized to a negative number, then the last else branch of
the program can be taken, and CF would remain negative in the subsequent trace.

Consider now the invariant property “each time the direction of the lift is updated, also its floor is
updated”. In this case, it can be noticed that all the conditional steps in Figure 4 satisfy this property, since
whenever the positive condition in the step is merged with the store, it entails that Dir has a value, then it
is also entailed that CF is instantiated.

Verifying liveness properties is harder since it involves analyzing unknown length sequences of steps. For
instance, given a process p(Ð→x), assume that we want to check that “every time an abstract constraint ĉ

holds, then it exists a future state where another abstract constraint d̂ holds”. Given the conditional graph
for p(Ð→x), this property would hold if for each node labeled with a conditional step whose positive condition
and store entails ĉ then all paths starting from such node contain a conditional step whose positive condition

and store entails d̂.

Example 4.2 Observe that lift process in Example 2.1 satisfies the property “every time the current floor
is 0 and the direction is down, the direction will be up eventually”. In fact, the first node of the third branch
from the left in Figure 4 is the sole step that contains in its positive condition CF = [0 ∣] and Dir = [down].
Furthermore, for each possible path from this node we find a conditional step where Dir = [up ∣] appears
in the positive condition or in the store.

Another interesting liveness property that can be analyzed on the lift process is “whenever the current
floor is 0 it exists a future state when this value changes”, i.e., we do not stay indefinitely in floor 0.

Since the number of nodes in the graph is finite, the aforementioned analysis terminates in a finite number
of steps.

Let us now analyze non-suspension. Non-suspension analysis consists in ensuring that no execution of a
tccp program suspends. In conditional graphs, in order to check whether p(Ð→x) never suspends, it is sufficient
to check that there is no node N in G labeled with a stutt construct with an outgoing arc pointing to N itself.
Inversely, if the graph contains a stuttering node, we can not guarantee suspension, due to over-approximation
of the semantics.

Example 4.3 Consider the semantics of the lift process in Figure 4. It is worth noting that the graph does
not contain any node labeled with stutt . Therefore, we can ensure that the lift process never suspends.

In the previous paragraphs, we have discussed the analysis of the lift process in isolation, without taking
into account the rest of processes which are concurrently in execution. The verification of properties on
systems composed of more than one process involves the construction of complex graphs in which each node
contains the positive and negative conditions along with the accumulated store obtained by the synchronous
execution of all active processes. Clearly, the size of this graph is a key parameter to determine the complexity
of verification algorithms based on graph exploration. For example, assume that we try to analyze properties
on the system composed by processes lift and pssngr of our guiding example. The graph corresponding to
the initial process

main(N ,O ,D) ∶ − ∃CF ,Dir ,St (lift(N,CF ,Dir) ∥ pssngr(CF ,O,D,St) ∥
tell(CF = [0 ∣]) ∥ tell(Dir = [up ∣]) ∥ tell(St = [wait ∣]))

contains nodes where both the lift and the pssngr evolve synchronously following the behavior defined by
the semantics in Section 3. The size of this graph strongly depends on the initial value of variable N , i.e., the
number of the floors, since the lift process iteratively changes its current floor in the range [0..N] and, each
time it changes, the pssngr process compares the current floor with the parameters origin and destination.
In order to model all the possibilities, the parallel composition results in a graph that can be seen as the
composition of the lift graph in Figure 4 (fed with the initial constraints given by the two tell agents,
and unfolded by making the possible floors explicit) with the pssngr graph. We could also complicate the
structure of the system by considering more than one lift moving up and down in the building or adding more
passengers. In any case, the analysis of real systems would clearly benefit from data abstraction following
the methodology described in Section 3.1.

Example 4.4 As an example of data abstraction for the guiding example, consider the Floors abstract
domain of Example 3.2. With this abstraction, we could construct the abstract graph of the main agent

A program analysis framework for tccp based on abstract interpretation 17

above which is independent of the actual number N of building floors. Clearly, the price to pay is the loss
of precision when analyzing some properties on the system. For instance, we could prove that the system
lift/pssngr does not block irrespective of the number of floors in the building. It could be also possible to
analyze properties which are not affected by the abstraction such as “if the lift is at floor 0 and the lift
direction is down, then the lift does not move until the direction changes to up.”

However, observe that due to the imprecision when carrying out operations on abstract values, the
abstract graph contains spurious behaviors that make impossible to directly prove some liveness properties.
For instance, since adding 1 to the abstract value notLowerx returns notLowerx, the abstract graph includes
paths where the current floor is always increasing, which is clearly unrealistic. Several techniques may be
utilized to eliminate these false behaviors. For instance, in [CGJ+00], the semantics is gradually refined by
using spurious counterexamples. It is also possible to prune the part of the graph explored by assuming
fairness conditions as described in [GMP02]. For example, by imposing condition “the lift will reach floor 0
infinitely often”, it could be possible to prove liveness properties as “if the origin and destination floors for
the pssngr are 0 and N , respectively, then the pssngr will enter in the lift at floor 0 at some future time,
and she will leave the lift at floor N , eventually”.

5. Related work

The recent work [CGTV15] was the first attempt to propose a program analysis framework based on ab-
stract interpretation for a concurrent constraint language adhering to the characteristics of tccp (negative
information, non-determinism and infinite behaviors). The new proposed framework improves the applicative
domain of the work in [CGTV15]. More specifically, we have relaxed the condition on the abstract domain so
that now we can use abstract domains that better capture the relations of practical interest in the concrete
domain. For instance, the domain of Example 3.2 does not satisfy the conditions required in [CGTV15].

Previously, in [FOP15], a framework for dataflow analysis of programs written in two other languages of
the ccp family, tcc and utcc, is presented. The two main differences between these two languages and tccp
are the notion of time (tcc and utcc use dedicated timing constructs) and determinism (vs. non-determinism
of tccp). Moreover, in the case studies, [FOP15] uses a depth(k) abstraction to ensure convergence, which
consists in a non-selective cut at some point in time (instead of the selective cut that we can use by widening
like in Example 3.23).

In [FV06], it was defined a model checking algorithm for tccp which allowed us to verify timed-depending
properties. Their algorithm was based on the exploration of a graph representation of the program behavior
which resembles the graph representation of the semantics defined in this paper. Thus we could as well
employ our graph representation to perform (an efficient) model checking. Note however that the abstract
semantics that we propose now is not limited to the verification of temporal properties.

Finally, [AGPV05] proposes an abstract semantic framework for tccp that, differently from our approach,
was based on source-to-source transformations. The two approaches are completely different: [AGPV05]
aimed at using the concrete semantics to execute the transformed (abstract) program. This could be done
thanks to a non-trivial transformation of the program (an analysis on the structure of the program was
necessary as a preprocess of the transformation). Our approach aims at defining an abstract semantics that,
thanks to the characteristics of the concrete denotational semantics, is guaranteed to be correct and we argue
that is precise enough to allow the definition of interesting analyses.

6. Conclusions and future work

We have proposed a program analysis framework based on an abstract semantics that, together with a
widening operator, is suitable for the definition of different analyses for full tccp programs. This is a difficult
task because of the presence of infinite computations, use of negative information and non-determinism.
However, it is essential to consider these features of the language since these are the ones that make tccp
well-suited to model reactive systems.

The abstract semantics is an over-approximation, which makes possible to define analysis tools for uni-
versal properties. To the best of our knowledge, this is the first proposal that defines an analysis which
adaptively ensures termination depending on the program (by means of widening). This should give better
results than the non-selective approaches.

18 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

We have also improved the framework previously defined in [CGTV15] by relaxing the properties of the
abstract domain and we have shown its applicability by means of examples.

This work culminates the first step towards our final goal of defining a rich abstract semantic framework
for the analysis of tccp programs. As future work, we are interested in defining an under-approximating
framework for tccp. Under-approximations do not capture all possible program’s behaviors, but no spurious
ones are included. These kind of abstractions allows one to analyze existential properties, for instance the
existence of a suspension trace.

References

[AGPV05] M. Alpuente, M.M. Gallardo, E. Pimentel, and A. Villanueva. A Semantic Framework for the Abstract Model
Checking of tccp Programs. Theoretical Computer Science, 346(1):58–95, 2005.

[BHRZ05] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise Widening Operators for Convex Polyhedra. Science of
Computer Programming, 58(1-2):28–56, 2005.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, Los Angeles, California, January 17–19, pages 238–252, New York, NY,
USA, 1977. ACM Press.

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement. In CAV,
number 1855 in Lecture Notes in Computer Science, pages 154–169. Springer Verlag, 2000.

[CGTV15] M. Comini, M.M. Gallardo, L. Titolo, and A. Villanueva. Abstract Analysis of Universal Properties for tccp. In
M. Falaschi, editor, Logic-based Program Synthesis and Transformation, 25th International Symposium, LOP-
STR 2015. Revised Selected Papers, volume 9527 of Lecture Notes in Computer Science, pages 163–178. Springer
International Publishing, 2015.

[CTV11] M. Comini, L. Titolo, and A. Villanueva. Abstract Diagnosis for Timed Concurrent Constraint programs. Theory
and Practice of Logic Programming, 11(4-5):487–502, 2011.

[CTV13] M. Comini, L. Titolo, and A. Villanueva. A Condensed Goal-Independent Bottom-Up Fixpoint Modeling the
Behavior of tccp. Technical report, DSIC, Universitat Politècnica de València. Available at http://riunet.upv.
es/handle/10251/34328, 2013.

[dBGM00] F. S. de Boer, M. Gabbrielli, and M. C. Meo. A Timed Concurrent Constraint Language. Information and
Computation, 161(1):45–83, 2000.

[FGMP93] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Compositional Analysis for Concurrent Constraint
Programming. In Proceedings of the Eighth Annual IEEE Symposium on Logic in Computer Science, pages 210–
221, Los Alamitos, CA, USA, 1993. IEEE Computer Society Press.

[FOP15] M. Falaschi, C. Olarte, and C. Palamidessi. Abstract Interpretation of Temporal Concurrent Constraint Programs.
Theory and Practice of Logic Programming (TPLP), 15(3):312–357, 2015.

[FV06] M. Falaschi and A. Villanueva. Automatic verification of timed concurrent constraint programs. Theory and
Practice of Logic Programming, 6(3):265–300, 2006.

[GMP02] M. M. Gallardo, P. Merino, and E. Pimentel. Refinement of LTL formulas for abstract model checking. In Static
Analysis, 9th International Symposium, SAS 2002, Madrid, Spain, September 17-20, 2002, Proceedings, pages
395–410, 2002.

[Sar93] V. A. Saraswat. Concurrent Constraint Programming. The MIT Press, Cambridge, Mass., 1993.
[SRP91] V. A. Saraswat, M. Rinard, and P. Panangaden. The Semantic Foundations of Concurrent Constraint Programming.

In Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
333–352, New York, NY, USA, 1991. ACM.

[ZGL97] E. Zaffanella, R. Giacobazzi, and G. Levi. Abstracting Synchronization in Concurrent Constraint Programming.
Journal of Functional and Logic Programming, 1997(6), 1997.

A. Proofs

The two abstract propagation operators are correct w.r.t. the concrete ones, as formally stated by the
following lemma.

Lemma A.1 (Correctness of strong and weak abstract propagation) Let r ∈ CT and c ∈ C. Then

ατ(r↡c) t ατ(r)↡̂τ(c) and ατ(r↓c) t ατ(r)↓̂τ(c).

Proof. First we prove that ατ(r↡c) t ατ(r)↡̂τ(c). Note that the concrete and abstract versions of the operators

are structurally identical. They differ in using and abstract constraints and the related abstract operations
instead of their concrete versions. The proof proceeds by structural induction, proving that, for each case,
the abstract conditional traces resulting by applying the abstract operators is greater or equal (less precise)
than the traces resulting from applying ατ to the output of the concrete operation.

http://riunet.upv.es/handle/10251/34328
http://riunet.upv.es/handle/10251/34328

A program analysis framework for tccp based on abstract interpretation 19

Let us first recall the definition for the concrete operator from [CTV13].

Definition A.2 (Concrete propagation operator) Let r ∈ CT and c ∈ C. We define the propagation
of c in r, written r↡c, by structural induction as ε↡c = ε, ⊠↡c = ⊠, and

((η+, η−)↣ d ⋅ r′)↡c = {(c⊗ η
+, η−)↣ d⊗ c ⋅ (r′↡c) if c≫ (η+, η−), c⊗ d ≠ false

(c⊗ η+, η−)↣ false ⋅ ⊠ if c≫ (η+, η−), c⊗ d = false

(stutt(η−) ⋅ r′)↡c = stutt(η−) ⋅ (r′↡c) if ∀c− ∈ η−. c ⊬ c−

Now we proceed by cases:

r = ε ∀c ∈ C. ατ(ε↡c) = ε = ατ(ε)↡̂τ(c).
r = ⊠ ∀c ∈ C. ατ(⊠↡c) = ⊠ = ατ(⊠)↡̂τ(c).
r = (η+, η−)↣ d ⋅ r′ In case cÉ (η+, η−), r↡c and ατ(r↡c) are not defined. Otherwise, if c≫ (η+, η−) we can
distinguish two cases.

c⊗ d ≠ false ατ(r) = (τ(η+), τ̄(η−))↣ τ(d) ⋅ατ(r′). Moreover, from Equation (3.2), c≫ (η+, η−)⇒ τ(c) ≫̂
(τ(η+), τ̄(η−)) and from the insertion between concrete and abstract domain, c⊗d ≠ false ⇒ τ(c)⊗̂τ(d) ≠

ˆfalse.

ατ(r↡c) =ατ(((η+, η−)↣ d ⋅ r′)↡c)
[since c≫ (η+, η−) and c⊗ d ≠ false]

=ατ((c⊗ η+, η−)↣ c⊗ d ⋅ (r′↡c))
[by Definition 3.8 (ατ)]

=(τ(c⊗ η+), τ̄(η−))↣ τ(c⊗ d) ⋅ ατ(r′↡c)
[by Inductive Hypothesis]

t(τ(c⊗ η+), τ̄(η−))↣ τ(c⊗ d) ⋅ ατ(r′)↡̂τ(c)
[by the abstract domain properties and order]

t (τ(c) ⊗̂ τ(η+),{τ(η−n) ∣ η−n ∈ η−})↣ (τ(c) ⊗̂ τ(d)) ⋅ ατ(r′)↡̂τ(c)
[since τ(c) ≫̂ (τ(η+), τ̄(η−)) and τ(c) ⊗̂ τ(d) ≠ ˆfalse, and by Definition 3.9]

=ατ(r)↡̂τ(c)
c⊗ d = false Similarly to the previous case, by Equation (3.2), c≫ (η+, η−)⇒ τ(c) ≫̂ (τ(η+), τ̄(η−)) and

from the insertion between concrete and abstract domain, c⊗ d = false ⇒ τ(c) ⊗̂ τ(d) = ˆfalse.

ατ(r↡c) =ατ(((η+, η−)↣ d ⋅ r′)↡c)
[since c≫ (η+, η−) and c⊗ d = false]

=ατ((c⊗ η+, η−)↣ false ⋅ ⊠)
[by Definition 3.8 (ατ)]

=(τ(c⊗ η+), τ̄(η−))↣ ˆfalse

[by the abstract domain properties]

t(τ(c) ⊗̂ τ(η+),{τ(η−n) ∣ η−n ∈ η−})↣ ˆfalse

[since τ(c) ≫̂ (τ(η+), τ̄(η−)) and τ(c) ⊗̂ τ(d) = ˆfalse, and by Definition 3.9]

=ατ(r)↡̂τ(c)
r = stutt(η−) ⋅ r′ In case cÉ (η+, η−), r↡c and ατ(r↡c) are not defined. Otherwise, if c≫ (η+, η−), we have:

ατ(r↡c) = ατ(stutt(η−) ⋅ r′↡c)
[by Definition 3.8 (ατ)]

20 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

= stutt(τ̄(η−)) ⋅ ατ(r′↡c)
[by Inductive Hypothesis]

t stutt(τ̄(η−)) ⋅ ατ(r′)↡̂τ(c)
= stutt({τ(η−n) ∣ η−n ∈ η−}) ⋅ ατ(r′)↡̂τ(c)

[by Definition 3.9]

= ατ(r)↡̂τ(c)

Now we prove that ατ(r↓c) t ατ(r)↓̂τ(c) by induction on the structure of r. Again, we first recall the
definition for the concrete operator from [CTV13].

Definition A.3 (Concrete weak propagation operator) Let r ∈ CT and c ∈ C. We define the weak
propagation of c in r, denoted r↓c, as ε↓c ∶= ε, ⊠↓c ∶= ⊠, and

((η+, η−)↣ d ⋅ r′)↓c ∶= (c⊗ η+, η−)↣ d ⋅ (r′↓c) if c≫ (η+, η−)
(stutt(η−) ⋅ r′)↓c ∶= stutt(η−) ⋅ (r′↓c) if ∀c− ∈ η−. c ⊬ c−

Now we proceed by cases:

r = ε ∀c ∈ C. ατ(ε↓c) = ε = ατ(ε)↓̂τ(c).
r = ⊠ ∀c ∈ C. ατ(⊠↓c) = ⊠ = ατ(⊠)↓̂τ(c).
r = (η+, η−)↣ d ⋅ r′ In case c É (η+, η−), r↓c and ατ(r↓c) are not defined. Otherwise, from Equation (3.2),
c≫ (η+, η−)⇒ τ(c) ≫̂ (τ(η+), τ̄(η−)).

ατ(r↓c) =ατ(((η+, η−)↣ d ⋅ r′)↓c)
[since c≫ (η+, η−)]

=ατ((c⊗ η+, η−)↣ d ⋅ (r′↓c))
[by Definition 3.8 (ατ)]

=(τ(c⊗ η+), τ̄(η−))↣ τ(d) ⋅ ατ(r′↓c)
[by Inductive Hypothesis]

t(τ(c⊗ η+), τ̄(η−))↣ τ(d) ⋅ ατ(r′)↓̂τ(c)
[by the abstract domain properties]

t (τ(c) ⊗̂ τ(η+),{τ(η−n) ∣ η−n ∈ η−})↣ τ(d) ⋅ ατ(r′)↓̂τ(c)
[since τ(c) ≫̂ (τ(η+), τ̄(η−)), and by Definition 3.11]

=ατ(r)↓̂τ(c)
r = stutt(η−) ⋅ r′ In case cÉ (η+, η−), r↓c and ατ(r↓c) are not defined. Otherwise, if c≫ (η+, η−), we have:

ατ(r↓c) = ατ((stutt(η−) ⋅ r′)↓c)
[since c≫ (η+, η−)]

= ατ(stutt(η−) ⋅ r′↓c)
[by Definition 3.8 (ατ)]

= stutt(τ̄(η−)) ⋅ ατ(r′↓c)
[by Inductive Hypothesis]

t stutt({τ(η−n) ∣ η−n ∈ η−}) ⋅ ατ(r′)↓̂τ(c)
[by Definition 3.11]

= ατ(r)↓̂τ(c)

A program analysis framework for tccp based on abstract interpretation 21

The following lemma states the soundness of ∥̂ w.r.t. the concrete parallel composition operator.

Lemma A.4 (Correctness of the abstract parallel) Let r1, r2 ∈ C. Then ατ(r1 ∥̄ r2) t ατ(r1) ∥̂ ατ(r2)
Proof. First let us recall the definition for the concrete operator from [CTV13].

Definition A.5 (Concrete parallel composition) The parallel composition partial operator ∥̄∶CT×CT →
CT is the commutative closure of the following partial operation defined by structural induction as11 r ∥̄ ε ∶= r,
r ∥̄ ⊠ ∶= r and

(stutt(η−1) ⋅ r′1) ∥̄ (stutt(η−2) ⋅ r′2) ∶= stutt(η−1 ⊎ η−2) ⋅ (r′1 ∥̄ r′2)
Moreover, if η1 ⊗ η2 is consistent, then

(η1 ↣ c1 ⋅ r′1) ∥̄ (η2 ↣ c2 ⋅ r′2) ∶= {η1 ⊗ η2 ↣ c1 ⊗ c2 ⋅ ((r′1↓η+2 ↡c2) ∥̄ (r′2↓η+1 ↡c1)) if c1 ⊗ c2 ≠ false

η1 ⊗ η2 ↣ false ⋅ ⊠ if c1 ⊗ c2 = false,

Finally, if ∀c− ∈ η−2 . η+1 ⊬ c−, then

((η+1 , η−1)↣ c1 ⋅ r′1) ∥̄ (stutt(η−2) ⋅ r′2) ∶= (η+1 , η−1 ⊎̂ η−2)↣ c1 ⋅ (r′1 ∥̄ (r′2↓η+1 ↡c1))

Note that the concrete and abstract versions of this operator are structurally identical. The abstract version
is obtained from the concrete by replacing concrete constraints and operations on them by their abstract
versions.

The proof proceeds by structural induction on the structure of r1. The cases for r2 are symmetric.

r1 = ε and any r2 ατ(r1 ∥̄ r2) = ατ(r2) = ε ∥̂ ατ(r2) = ατ(r1) ∥̂ ατ(r2).
r1 = ⊠ and any r2 ατ(r1 ∥̄ r2) = ατ(r2) = ⊠ ∥̂ ατ(r2) = ατ(r1) ∥̂ ατ(r2).
r1 = η1 ↣ c1 ⋅ r′1 and r2 = η2 ↣ c2 ⋅ r′2 In case η1 ⊗ η2 is not a consistent condition r1 ∥̄ r2 is not defined
and, as a consequence, also ατ(r1 ∥̄ r2) is not defined. Otherwise, if η1 ⊗ η2 is a consistent condition, by the
properties of the abstract domain and Equation 3.2, its abstraction is consistent too, thus, we can distinguish
two cases.

c1 ⊗ c2 ≠ false From the insertion between the concrete and abstract domains, it follows that τ(c1)⊗̂τ(c2) ≠
ˆfalse.

ατ(r1 ∥̄ r2) =
= ατ((η1 ⊗ η2)↣ c1 ⊗ c2 ⋅ (r′1↓η+2 ↡c2 ∥̄ r

′
2↓η+1 ↡c1))

[by Definition 3.8 (ατ)]

= (τ(η+1 ⊗ η+2), τ̄(η−1 ⊎ η−2))↣ τ(c1 ⊗ c2) ⋅ ατ(r′1↓η+2 ↡c2 ∥̄ r
′
2↓η+1 ↡c1)

[by Inductive Hypothesis]

t (τ(η+1 ⊗ η+2), τ̄(η−1 ⊎ η−2))↣ τ(c1 ⊗ c2) ⋅ ατ(r′1↓η+2 ↡c2) ∥̂ α
τ(r′2↓η+1 ↡c1)

[by the abstract domain properties]

t ((τ(η+1) ⊗̂ τ(η+2), τ̄(η−1) ⊎̂ τ̄(η−2))↣ τ(c1) ⊗̂ τ(c2) ⋅ ατ(r′1↓η+2 ↡c2) ∥̂ α
τ(r′2↓η+1 ↡c1))

[by Lemma A.1]

t ((τ(η+1) ⊗̂ τ(η+2), τ̄(η−1) ⊎̂ τ̄(η−2))↣ τ(c1) ⊗̂ τ(c2) ⋅ ατ(r′1)↓̂τ(η+2)↡̂τ(c2) ∥̂ α
τ(r′2)↓̂τ(η+1)↡̂τ(c1))

[by Definition 3.13 and since τ(c1) ⊗̂ τ(c2) ≠ ˆfalse]

= (τ(η+1), τ̄(η−1))↣ τ(c1) ⋅ ατ(r′1)↓̂τ(η+2)↡̂τ(c2) ∥̂ (τ(η+2), τ̄(η−2))↣ τ(c2) ⋅ ατ(r′2)↓̂τ(η+1)↡̂τ(c1)
= ατ(r1) ∥̂ ατ(r2)

11 We have omitted some technical details of the concrete domain, but operators ⊎ and conjunction (written ⊗) of two concrete
conditions are defined similarly to the corresponding operators in the abstract domain.

22 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

c1 ⊗ c2 = false From the insertion between the concrete and abstract domains, it follows that τ(c1)⊗̂τ(c2) =
ˆfalse.

ατ(r1 ∥̄ r2) =
= ατ((η1 ⊗ η2)↣ false ⋅ ⊠)

[by Definition 3.8 (ατ)]

= (τ(η+1 ⊗ η+2), τ̄(η−1 ⊎ η−2))↣ τ(false) ⋅ ⊠
[by the abstract domain properties]

t (τ(η+1) ⊗̂ τ(η+2), τ̄(η−1) ⊎̂ τ̄(η−2))↣ τ(c1) ⊗̂ τ(c2) ⋅ ⊠
[by Definition 3.13]

= (τ(η+1), τ̄(η−1))↣ τ(c1) ⋅ ατ(r′A) ∥̂ (τ(η+2), τ̄(η−2))↣ τ(c2) ⋅ ατ(r′B)
[since τ(c1) ⊗̂ τ(c2) = ˆfalse]

= ατ(r1) ∥̂ ατ(r2)

r1 = η1 ↣ c1 ⋅ r′1 and r2 = stutt(η−2) ⋅ r′2 In case (η+1 , η−1 ⊎ η−2) is not a consistent condition r1 ∥̄ r2 is not
defined and, as a consequence, ατ(r1 ∥̄ r2) is not defined. Otherwise, if (η+1 , η−1 ⊎ η−2) is a consistent condition,
by the properties of the abstract domain and Equation 3.2, its abstraction is consistent too, thus

ατ(r1 ∥̄ r2) =
= ατ((η+1 , η−1 ⊎ η−2)↣ c1 ⋅ r′1 ∥̄ r′2↓η+1 ↡c1)

[by Definition 3.8 (ατ) and property (3.2)]

= (τ(η+1), τ̄(η−1 ⊎ η−2))↣ τ(c1) ⋅ ατ(r′1 ∥̄ r′2↓η+1 ↡c1)
[by Inductive Hypothesis]

t (τ(η+1), τ̄(η−1 ⊎ η−2))↣ τ(c1) ⋅ (ατ(r′1) ∥̂ ατ(r′2↓η+1 ↡c1))
[by Lemma A.1]

t (τ(η+1), τ̄(η−1 ⊎ η−2))↣ τ(c1) ⋅ (ατ(r′1) ∥̂ ατ(r′2)↓̂τ(η+1)↡̂τ(c1))

= (τ(η+1), τ̄(η−1) ⊎̂ τ̄(η−2))↣ τ(c1) ⋅ (ατ(r′1) ∥̂ ατ(r′2)↓̂τ(η1)↡̂τ(c1))
[by Definition 3.13]

= (τ(η+1), τ̄(η−1))↣ τ(c1) ⋅ ατ(r′1) ∥̂ stutt(τ̄(η−2)) ⋅ ατ(r′2)↓̂τ(η1)↡̂τ(c1)
= ατ(r1) ∥̂ ατ(r2)

r1 = stutt(η−1) ⋅ r′1 and r2 = stutt(η−2) ⋅ r′2
ατ(r1 ∥̄ s2) =

= ατ(stutt(η−1 ⊎ η−2) ⋅ r′1 ∥̄ r′2)
[by Definition 3.8 (ατ)]

= stutt(τ̄(η−1 ⊎ η−2)) ⋅ ατ(r′1 ∥̄ r′2)
= stutt(τ̄(η−1) ⊎̂ τ̄(η−2)) ⋅ ατ(r′1 ∥̄ r′2)

[by Inductive Hypothesis]

t stutt(τ̄(η−1) ⊎̂ τ̄(η−2)) ⋅ ατ(r′1) ∥̂ ατ(r′2)
[by Definition 3.13]

= stutt(τ̄(η−1)) ⋅ ατ(r′1) ∥̂ stutt(τ̄(η−1)) ⋅ ατ(r′2)

= ατ(r1) ∥̂ ατ(r2)

A program analysis framework for tccp based on abstract interpretation 23

The abstract hiding operator ∃̂ is sound w.r.t. its concrete counterpart.

Lemma A.6 Given r ∈ CT and V ∈ ℘(Var), ατ(∃̄V r) t ∃̂V ατ(r).

Proof. Let us first recall the definition for the concrete operator, technically adapted from [CTV13].

Definition A.7 (Concrete hiding operator) The concrete hiding operator is the partial function ∃̄∶ ℘(Var)×
CT →CT defined by structural induction as: ∃̄V ε ∶= ε, ∃̄V ⊠ ∶= ⊠,

∃̄V ((η+, η−)↣ c ⋅ r′) ∶= ((∃V η+,∃V η−)↣ ∃V c) ⋅ ∃̄V r′

∃̄V (stutt(η−) ⋅ r′) ∶= stutt(∃V η−) ⋅ ∃̄V r′

where, for all c ∈ C, ∃{x1,...,xn} c ∶= ∃x1 ⋯∃xn c and, for all C ∈ ℘(C), ∃V C ∶= {∃V c ∣ c ∈ C}.
We abuse notation and write ∃x r for ∃{x} r.

We proceed by structural induction on r.

r = ε or r = ⊠ In this case the statement follows directly from Definition 3.15.

r = (η+, η−)↣ c ⋅ r′

ατ(∃̄V r) =ατ(∃̄V ((η+, η−)↣ c ⋅ r′))
=ατ((∃V η+,∃V η−)↣ ∃V c ⋅ ∃̄V r′)

[by Definition 3.8]

=(τ(∃V η+), τ̄(∃V η−))↣ τ(∃V c) ⋅ ατ(∃̄V r′)
[by Inductive Hypothesis]

t(τ(∃V η+), τ̄(∃V η−))↣ τ(∃V c) ⋅ ∃̂V ατ(r′)
[by the abstract domain properties]

t(∃̂V τ(η+), ∃̂V τ̄(η−))↣ ∃̂V τ(c) ⋅ ∃̂V ατ(r′)
[by Definition 3.15]

=∃̂V ατ(r)

r = stutt(η−) ⋅ r′

ατ(∃̄V r) =ατ(∃̄V (stutt(η−) ⋅ r′))
=ατ((stutt(∃̄V η−) ⋅ ∃̄V r′))

[by Definition 3.8]

=stutt(τ̄(∃V η−)) ⋅ ατ(∃̄V r′)
[by Inductive Hypothesis]

tstutt(τ̄(∃V η−)) ⋅ ∃̂V ατ(r′)
[by the abstract domain properties]

tstutt(∃̂V τ̄(η−)) ⋅ ∃̂V ατ(r′)
[by Definition 3.15]

=∃̂V ατ(r)

It follows directly from Lemma A.6 and Equation (3.3) that, given a conditional trace r ∈ C and a variable
x ∈ Var :

r is x-self-sufficientÔ⇒ ατ(r) is abstractly x-self-sufficient (A.1)

24 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

Proof of Theorem 3.19 (Correctness of the abstract semantics operators). We prove by induction on the struc-
ture of any agent A that ατ(AJAKγτ (Iα)) ≤ AαJAKIα (3.5).

Let us first recall the definition for the concrete evaluation function from [CTV13].

Definition A.8 (Semantics Evaluation Function for Agents) Given A ∈ AΠ
C and I ∈ IΠ, we define

the semantics evaluation AJAKI ∈ C by structural induction as follows.

AJskipKI ∶= {⊠} (A.2a)

AJtell(c)KI ∶= {(true,∅)↣ c ⋅ ⊠} (A.2b)

AJA ∥ BKI ∶=⊔{rA ∥̄ rB ∣ rA ∈ AJAKI , rB ∈ AJBKI} (A.2c)

AJ∃xAKI ∶=⊔{ ∃̄x r ∣ r ∈ AJAKI , r is x-self-sufficient} (A.2d)

AJp(Ð→x)KI ∶= (true,∅)↣ true ⋅ I(p(Ð→x))12 (A.2e)

AJ
n

∑
i=1

ask(ci)→ AiKI ∶=⊔{stt ⋅ . . . ⋅ stt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⋅R ∣m ∈ N} ⊔ {stt ⋅ . . . ⋅ stt ⋅ . . .} (A.2f)

where stt ∶= stutt({c1, . . . , cn}) and R ∶= ⊔{(ci,∅)↣ true ⋅ (r↓ci) ∣1 ≤ i ≤ n, r ∈ AJAiKI}

AJnow c then A else BKI ∶=
{(c,∅)↣ true ⋅ ⊠ ∣ ⊠ ∈ AJAKI} ⊔
⊔{(c⊗ η+, η−)↣ d ⋅ (r↓c) ∣ (η+, η−)↣ d ⋅ r ∈ AJAKI ,∀c− ∈ η−. c⊗ η+ ⊬ c−} ⊔
⊔{(c, η−)↣ true ⋅ (r↓c) ∣ stutt(η−) ⋅ r ∈ AJAKI , ∀c− ∈ η−. c ⊬ c−} ⊔
{(true,{c})↣ true ⋅ ⊠ ∣ ⊠ ∈ AJBKI} ⊔
⊔{(η+, η− ⊎ {c})↣ d ⋅ r ∣ (η+, η−)↣ d ⋅ r ∈ AJBKI , η+ ⊬ c} ⊔
⊔{(true, η− ⊎ {c})↣ true ⋅ r ∣ stutt(η−) ⋅ r ∈ AJBKI} (A.2g)

Now we proceed by cases.

A = skip In this case, the proof is straightforward: ατ(AJskipKγτ (Iα)) = {⊠} = AαJskipKIα
A = tell(c)

ατ(AJtell(c)Kγτ (Iα)) = ατ({(true,∅)↣ c ⋅ ⊠})
[by Definition 3.8 (ατ)]

= (τ(true), τ̄(∅))↣ τ(c) ⋅ ⊠
[since τ(true) = ˆtrue and τ̄(∅) = ∅]

= (ˆtrue,∅)↣ τ(c) ⋅ ⊠
[by Equation (3.4b)]

= AαJtell(c)KIα

A = ∑n
i=1 ask(ci)→Ai

ατ(AJ
n

∑
i=1

ask(ci)→ AiKγτ (Iα)) =

ατ(⊔{stt ⋅ . . . ⋅ stt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⋅r ∣m ∈ N, r ∈M} ⊔ {stt ⋅ . . . ⋅ stt ⋅ . . .})

where stt ∶= stutt({c1, . . . , cn}) and M =⊔{(ci,∅)↣ true ⋅ (r′↓ci) ∣1 ≤ i ≤ n, r′ ∈ AJAiKγτ (Iα)}.

[by Definition 3.8 (ατ)]

=⋁{sttα ⋅ . . . ⋅ sttα
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⋅r̂ ∣m ∈ N, r̂ ∈ M̂} ∨ {sttα ⋅ . . . ⋅ sttα ⋅ . . .}

12 Recall that we denote {s1 ⋅ s2 ∣ s2 ∈ S} by s1 ⋅ S.

A program analysis framework for tccp based on abstract interpretation 25

where sttα ∶= stutt(τ̄({c1, . . . , cn}))
and M̂ =⋁{(τ(ci),∅)↣ ˆtrue ⋅ ατ(r′↓ci) ∣1 ≤ i ≤ n, r′ ∈ AJAiKγτ (Iα)}.

[by Induction Hypothesis and Lemma A.1]

≤⋁{sttα ⋅ . . . ⋅ sttα
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m

⋅r̂ ∣m ∈ N, r̂ ∈ M̂ ′} ∨ {sttα ⋅ . . . ⋅ sttα ⋅ . . .}

where M̂ ′ =⋁{(τ(ci),∅)↣ ˆtrue ⋅ r̂′↓̂ci ∣1 ≤ i ≤ n, r̂
′ ∈ AαJAiKIα}.

[by Equation (3.4f)]

=AαJ
n

∑
i=1

ask(ci)→ AiKIα

A = now c thenA1 elseA2

ατ(AJnow c then A1 else A2Kγτ (Iα))
= ατ({(c,∅)↣ true ⋅ ⊠ ∣ ⊠ ∈ AJA1Kγτ (Iα)} ⊔

⊔{(c⊗ η+, η−)↣ d ⋅ (r↓c) ∣ (η+, η−)↣ d ⋅ r ∈ AJA1Kγτ (Iα),∀c− ∈ η−. c⊗ η+ ⊬ c−} ⊔
⊔{(c, η−)↣ true ⋅ (r↓c) ∣ stutt(η−) ⋅ r ∈ AJA1Kγτ (Iα),∀c− ∈ η−. c ⊬ c−} ⊔
{(true,{c})↣ true ⋅ ⊠ ∣ ⊠ ∈ AJA2Kγτ (Iα)} ⊔
⊔{(η+, η− ⊎ {c})↣ d ⋅ r ∣ (η+, η−)↣ d ⋅ r ∈ AJA2Kγτ (Iα), η+ ⊬ c} ⊔
⊔{(true, η− ⊎ {c})↣ true ⋅ r ∣ stutt(η−) ⋅ r ∈ AJA2Kγτ (Iα)})

[by Definition 3.8 (ατ)]

= {(τ(c), τ̄(∅))↣ τ(true) ⋅ τ(⊠) ∣ ⊠ ∈ AJA1Kγτ (Iα)} ∨
⋁{ (τ(c⊗ η+), τ̄(η−))↣ τ(d) ⋅ ατ(r↓c) ∣

(η+, η−)↣ d ⋅ r ∈ AJA1Kγ̃(Iα),∀c− ∈ η−. c⊗ η+ ⊬ c−} ∨
⋁{(τ(c), τ̄(η−))↣ τ(true) ⋅ ατ(r↓c) ∣ stutt(η−) ⋅ r ∈ AJA1Kγτ (Iα),∀c− ∈ η−. c ⊬ c−} ∨
{(τ(true), τ̄({c}))↣ τ(true) ⋅ τ(⊠) ∣ ⊠ ∈ AJA2Kγτ (Iα)} ∨
⋁{(τ(η+), τ̄(η− ⊎ {c}))↣ τ(d) ⋅ ατ(r) ∣ (η+, η−)↣ d ⋅ r ∈ AJA2Kγτ (Iα), c ⊬ η+} ∨
⋁{(τ(true), τ̄(η− ⊎ {c}))↣ τ(true) ⋅ ατ(r) ∣ stutt(η−) ⋅ r ∈ AJA2Kγτ (Iα)}

[by Lemma A.1]

≤ {(τ(c),∅)↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AJA1Kγτ (Iα)} ∨

⋁{ (τ(c⊗ η+), τ̄(η−))↣ τ(d) ⋅ ατ(r)↓̂τ(c) ∣
(η+, η−)↣ d ⋅ r ∈ AJA1Kγτ (Iα),∀c− ∈ η−. c⊗ η+ ⊬ c−} ∨

⋁{(τ(c), τ̄(η−))↣ ˆtrue ⋅ ατ(r)↓̂τ(c) ∣ stutt(η−) ⋅ r ∈ AJA1Kγτ (Iα),∀c− ∈ η−. c ⊬ c−} ∨
{(ˆtrue, τ̄({c}))↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AJA2Kγτ (Iα)} ∨
⋁{(τ(η+), τ̄(η− ⊎ {c}))↣ τ(d) ⋅ ατ(r) ∣ (η+, η−)↣ d ⋅ r ∈ AJA2Kγτ (Iα), c ⊬ η+} ∨

⋁{(ˆtrue, τ̄(η− ⊎ {c}))↣ ˆtrue ⋅ ατ(r) ∣ stutt(η−) ⋅ r ∈ AJA2Kγτ (Iα)}
[by Induction Hypothesis and the abstract domain properties]

26 M. Comini, M. Mar Gallardo, L. Titolo and A. Villanueva

≤ {(τ(c),∅)↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AαJA1KIα} ∨

⋁{ (τ(c) ⊗̂ τ(η+), τ̄(η−))↣ τ(d) ⋅ (r̂↓̂τ(c)) ∣
(τ(η+), τ̄(η−))↣ τ(d) ⋅ r̂ ∈ AαJA1KIα ,∀c− ∈ τ̄(η−). τ(c) ⊗̂ τ(η+) /(− c−} ∨

⋁{(τ(c), τ̄(η−))↣ ˆtrue ⋅ (r̂↓̂τ(c)) ∣ stutt(τ̄(η−)) ⋅ r̂ ∈ AαJA1KIα ,∀c− ∈ τ̄(η−). τ(c) /(− c−} ∨
{(ˆtrue, τ̄({c}))↣ ˆtrue ⋅ ⊠ ∣ ⊠ ∈ AαJA2KIα} ∨
⋁{ (τ(η+), τ(c) ⊎̂ τ̄(η−))↣ τ(d) ⋅ r̂ ∣

(τ(η+), τ̄(η−))↣ τ(d) ⋅ r̂ ∈ AαJA2KIα , τ(c) /(− τ(η+)} ∨
⋁{(ˆtrue, τ(c) ⊎̂ τ̄(η−))↣ ˆtrue ⋅ r̂ ∣ stutt(τ̄(η−)) ⋅ r̂ ∈ AαJA2KIα}

[by Equations (3.4g)]

= AαJnow c then A1 else A2KIα

A =A1 ∥A2 This case is straightforward by Lemma A.4.

ατ(AJA1 ∥ A2Kγτ (Iα)) = ατ(⊔{r1 ∥̄ r2 ∣ r1 ∈ AJA1Kγτ (Iα), r2 ∈ AJA2Kγτ (Iα)})
[by Definition 3.8 (ατ)]

=⋁{ατ(r1 ∥̄ r2) ∣ r1 ∈ AJA1Kγτ (Iα), r2 ∈ AJA2Kγτ (Iα)}
[by Lemma A.4]

≤⋁{ατ(r1) ∥̂ ατ(r2) ∣ r1 ∈ AJA1Kγτ (Iα), r2 ∈ AJA2Kγτ (Iα)}
[by Inductive Hypothesis]

≤⋁{r̂1 ∥̂ r̂2 ∣ r̂1 ∈ AαJA1KIα , r̂2 ∈ AαJA2KIα}
[by Equation (3.4c)]

= AαJA1 ∥ A2KIα

A = ∃xA1 This case is straightforward by Lemma A.6.

ατ(AJ∃xA1Kγτ (Iα)) = ατ(⊔{ ∃̄x r ∣ r ∈ AJA1Kγτ (Iα), r is x-self-sufficient})
=⋁{ατ(∃̄x r) ∣ r ∈ AJA1Kγτ (Iα), r is x-self-sufficient}

[by Lemma A.6]

≤⋁{∃̂x ατ(r) ∣ r ∈ AJA1Kγ̃(Iα), r is x-self-sufficient}
[by Inductive Hypothesis and Property (A.1)]

≤⋁{∃̂x r̂ ∣ r̂ ∈ AαJA1KIα , r̂ is abstractly x-self-sufficient}
[by (3.4d)]

= AαJ∃xA1KIα

A = p(z)

ατ(AJp(z)Kγτ (Iα)) = ατ(⊔{(true,∅)↣ true ⋅ r ∣ r ∈ γτ(Iα)(p(z))})
[by Definition 3.8 (ατ)]

=⋁{(τ(true), τ̄(∅))↣ τ(true) ⋅ ατ(r) ∣ r ∈ γτ(Iα)(p(z))}
[since τ(true) = ˆtrue, τ̄(∅) = ∅ and ατ ○γτ = id]

=⋁{(ˆtrue,∅)↣ ˆtrue ⋅ r̂ ∣ r̂ ∈ Iα(p(z))}
[by (3.4e)]

= AαJp(z)KIα

A program analysis framework for tccp based on abstract interpretation 27

Now we prove that ατ(DJDKγτ (Iα)(p(Ð→x))) ≤ DαJDKIα(p(Ð→x)) (3.6).

ατ(DJDKγτ (Iα)(p(Ð→x))) = [by D definition]

ατ
⎛
⎝ ⊔
p(Ð→x)∶−A∈D

AJAKγτ (Iα)
⎞
⎠
= [by ατ additivity]

⋁
p(Ð→x)∶−A∈D

ατ(AJAKγτ (Iα)) ≤ [since ατ(AJAKγτ (Iα)) ≤ AαJAKIα]

⋁
p(Ð→x)∶−A∈D

AαJAKIα = [by Dα definition]

DαJDKIα(p(Ð→x))

	Introduction
	The tccp language
	The concrete denotational semantics

	The (finite) abstract semantics for tccp
	The abstract semantic domain
	The abstract semantics
	From infinite to finite semantics

	Abstract analysis with an over-approximation
	Related work
	Conclusions and future work
	References
	Proofs

