
A Formal Analysis of the Compact Position
Reporting Algorithm

Aaron Dutle1, Mariano Moscato2, Laura Titolo2, and César Muñoz1

1 NASA Langley Research Center, Hampton, VA, US,
{aaron.m.dutle,cesar.a.munoz}@nasa.gov

2 National Institute of Aerospace, Hampton, VA, US,
{mariano.moscato,laura.titolo}@nianet.org

Abstract. The Compact Position Reporting (CPR) algorithm is a safety-
critical element of the Automatic Dependent Surveillance - Broadcast
(ADS-B) protocol. This protocol enables aircraft to share their current
states, i.e., position and velocity, with traffic aircraft in their vicinity.
CPR consists of a collection of functions that encode and decode aircraft
position data (latitude and longitude). Incorrect position decoding from
CPR has been reported to the American and European organizations
responsible for the ADS-B standard. This paper presents a formal anal-
ysis of the CPR algorithm in the Prototype Verification System (PVS).
This formal analysis shows that the published requirements for correct
decoding are insufficient, even if computations are assumed to be per-
formed using exact real arithmetic. As a result of this analysis tightened
requirements are proposed. These requirements, which are being con-
sidered by the standards organizations, are formally proven to guarantee
correct decoding under exact real arithmetic. In addition, this paper pro-
poses mathematically equivalent, but computationally simpler forms to
several expressions in the CPR functions in order to reduce imprecise
calculation.

1 Introduction

Automatic Dependent Surveillance - Broadcast (ADS-B) is arguably the most
important change to the operation of aircraft in national and international
airspace since the introduction of radar. The Federal Aviation Administration
has mandated that ADS-B out capability be installed on almost all general avi-
ation aircraft for most classes of airspace before the year 2020[3]. ADS-B allows
for a wide variety of information to be broadcast from an aircraft to any nearby
receiver, enabling many new capabilities, including increased situational aware-
ness for pilots. To enable this technology, the industry and regulatory agencies
agreed on a standard message format based on an existing transponder3; the
1090 Mhz Mode-S Extended Squitter. The broadcast message is 112 bits, of
which 56 bits are the data frame, the rest being aircraft identification, message

3 In fact, there are several allowable transponders and formats, though the majority
of current applications use the 1090 ES message described here.

type, and parity check information. When the data frame is a position message,
21 bits go to transmitting status information and altitude, leaving 35 bits total
for latitude and longitude. If raw latitude and longitude data were taken and
approximated to 17 bits each, the resulting precision would be worse than 300
meters, which would not be useful for precise navigation.

To remedy this, an algorithm referred to as Compact Position Reporting
(CPR) was developed to allow for more accurate position reporting. The general
idea is as follows. Each direction (latitude and longitude) is divided into zones
approximately 360 nautical miles long, and each zone into 217 bins. The position
broadcast corresponds to the centerline of the bin where the aircraft is currently
located in. This corresponds to one position in each zone. Depending on the type
of decoding being performed, the correct zone is then determined from either a
previously known position (for local decoding) or from a matched pair of mes-
sages (for global decoding). This allows for position accuracy of approximately
5 meters in airborne applications. It should be noted that because the number
of longitude degrees in 360 nautical miles differs based on latitude, the number
of zones used for calculating the longitude message also depends on the latitude.
The function that determines the number of longitude zones, named NL, can
be calculated directly from the latitude, but in practice is determined from a
pre-calculated lookup table.

Anecdotal evidence from pilots and manufacturers suggests that decoding of
CPR messages can lead to incorrect position reports for target aircraft. A priori,
these errors could stem from any number of places, including issues with the
functions themselves, issues with the requirements under which the functions
may be used, numerical computation errors, environmental factors, or any other
number of unknown causes. The work described here addresses the first three of
these possibilities.

On the practical side, this paper has two significant contributions that are
presented in the form of recommendations to the standards organizations in
charge of the ADS-B protocol.4 These recommendations aid in more reliable us-
age and implementation of the CPR algorithm and do not alter the logic of the
algorithm in its pure mathematical form. Hence, they do not impact implementa-
tions that are already in place and operating reliably. The first recommendation
is a tightening of the requirements on conditions for reliable decoding. These
strengthened requirements were discovered during the interactive construction
of the proof of correctness, during which a class of examples meeting the pub-
lished requirements for correct decoding were found to give significantly incorrect
answers. The second recommendation consists of a collection of simplified ex-
pressions for computations performed in the algorithm. These simplifications
reduce the numerical complexity of the expressions. This second class of results
are intended to aid future implementors of the algorithm in producing simpler
and more reliable code.

From the theoretical standpoint, the main contribution of this work is a
formal analysis of the CPR algorithm in the Prototype Verification System

4 These organizations are RTCA in the US and EUROCAE in Europe.

2

(PVS) [6]. The analysis includes a mechanically verified proof that the encod-
ing and decoding functions work as designed under the proposed tightened re-
quirements, and with the assumption of real number computation. This formal
analysis is meant to increase confidence that the functions themselves, in their
pure mathematical forms, are correct. In addition, the formal specification itself
is done in a way that allows the CPR algorithm to be executed in a number of
different computational modes. By instantiating a parameter, any of the CPR
functions can be evaluated in single precision floating-point, double precision
floating-point, or exact rational arithmetic. Transcendental functions that occur
in the algorithm can be evaluated in either one of the floating-point implemen-
tations or to a user specified precision. This allows for simple comparison of
the algorithm’s results under different computation models, without the need to
write separate versions of the algorithm for each model.

The remainder of the paper is organized as follows. Section 2 presents the
formal development of the CPR algorithm, including its main properties and
some rationale for how the requirements for proper decoding arise. Section 3 de-
tails the main practical results from the formal analysis, including the tightened
requirements for proper decoding and a number of computational simplifications
or the CPR algorithm. Section 4 discusses a method used to animate the spec-
ification of CPR in different computational modes. Finally, Section 5 concludes
this work.

The formulas and theorems presented in this paper are written in PVS. For
readability, this paper uses mathematical notation as opposed to PVS syntax.
The formal development is available at http://shemesh.larc.nasa.gov/fm/

CPR and requires the latest version the NASA PVS Library, which is available
at http://github.com/nasa/pvslib.

2 The Compact Position Reporting Algorithm

This section presents the formal development of the CPR algorithm, which
closely follows its standard definition in [7]. The CPR algorithm allows for three
different classes of position messages known as coarse, airborne, and surface,
which provide accuracies of approximately 165 m, 5 m, and 1.3 m, respectively.
For simplicity, the analysis presented in this paper only considers airborne mes-
sages. The analysis of the NL function, as well as the mathematical simplifica-
tions of computations, apply to all three versions. The requirement tightening,
as well as the formal verification of correct decoding, applies only to the airborne
version. Generalization to the other classes of messages is not theoretically chal-
lenging but would require a non-trivial amount of work.

The principle of the CPR encoding and decoding functions is that transmit-
ting the entire latitude and longitude measurement of a target would be a) a
prohibitively large message for sufficient precision, and b) wasteful, as the higher
order bits of such a transmission are very unlikely to change over a short period
of time. To remedy both of these issues, CPR transmits a version of the lower
order bits, and uses two different techniques to recover the higher order bits.

3

To accomplish this, CPR divides each of latitude and longitude into a number
of equally sized zones. The number of these zones depends on if the message is an
even or odd format, and when encoding longitude, on the current latitude of the
target. Each zone is then divided into 217 bins (see figure 1). The transmitted
information is the number corresponding to the bin that the target is currently
in. The difficult part of the process is then determining the correct zone. This is
done in the local decoding case by identifying a reference position close enough to
the target that only one of the possible bins is feasible, and in the global decoding
case by using an odd and an even message, and employing the difference in size
of odd versus even zones.

Fig. 1. CPR coordinates for latitude. Latitude is divided into 60 or 59 zones, depending
on the format to be broadcast (left). Each zone is then divided into 217 bins (right).
The bin the aircraft lies in determines the message.

2.1 Number of Longitude Zones

As previously stated the number of longitude zones depends on both the format
(even or odd) and the present latitude of the target. Note that if the number
of zones used for longitude encoding were a constant with respect to latitude,
the size of one such zone would vary significantly between the poles and the
equator. This would make decoding much more difficult at the poles, since the
zone number would change more rapidly at high latitudes. In order to alleviate
this, the number of longitude zones is variable depending on the latitude. This
NL value is meant to keep the size of a zone nearly constant.

For latitude, the size of an even zone is 6 degrees, while the odd zone is
slightly larger, at 360/59 degrees. To keep longitude similarly spaced, there are

4

59 even longitude zones at the equator, and one fewer odd zones (the number of
odd zones is always one fewer than the number of even zones). This even zone is
approximately 360 NMI wide. The number of even zones drops to 58 at the circle
of latitude where 58 zones of size 360 NMI suffice to cover the circular latitude
distance (assuming a spherical earth). More precisely, the number of longitude
zones (or NL value) corresponding to a specific latitude lat is given by

NL(lat) =

59 if lat = 0,⌊
2π

(
arccos

(
1− 1−cos(π30)

cos2(π
180 |lat|)

))−1⌋
if |lat| < 87,

1 if |lat| > 87,
2 otherwise.

(1)

In practice, computing this function is inefficient and would be burdensome
to perform each time an encoding is done. Instead, a lookup table of transition
latitudes is pre-calculated, and the NL value is determined from this table. In
PVS, the NL table is specified as follows.

NL Table(lat) = if |lat| > transition(2) then 1

elsif |lat| > transition(3) then 2

elsif |lat| > transition(4) then 3

...

elsif |lat| > transition(59) then 58

else 59

endif.

The transition latitudes are given for a value nl from 2 to 59 by the following
formula.

transition(nl) =
180

π
arccos

(√
1− cos(π/30)

1− cos(2π/nl)

)
. (2)

The following theorem about the correctness of this table is proven in PVS.

Theorem 1. For every latitude value lat,

NL(lat) = NL Table(lat).

During the process of encoding, extra precaution must be taken to ensure
that the NL value used for the longitude encoding is consistent with the latitude
broadcast. To do so, the latitude message to be broadcast is decoded onboard,
and this latitude is used to determine the NL value, ensuring that the reciever
can decode the longitude message consistently with the broadcaster.

5

2.2 Encoding

As mentioned in Section 1, the position message consists of 35 bits of information.
The first bit is used to describe the format of the message. The message is called
even if the bit is 0, and odd if the bit is 1.

Here, and throughout all computation in CPR, the mod function is defined
by

mod(x, y) = x− y
⌊
x

y

⌋
. (3)

While this is fairly standard for mathematics, it differs from the version used
in practice in standard programming languages, where the function is generally
restricted to integers.

Let dlati = 360/(60− i), where i is the format bit of the message to be sent.
The value of dlati is the size of a latitude zone. Next, for a latitude value lat,
compute

YZ i =

⌊
217

mod(lat, dlati)

dlati
+

1

2

⌋
. (4)

The latitude message, ŶZ i, is then the last 17 bits of this value. That is,

ŶZ i = mod(YZ i, 2
17). (5)

In Formula (4), mod(lat, dlati) corresponds to the distance that lat is from

the bottom of a zone edge. Thus mod(lat,dlati)
dlati

denotes the fractional amount

that lat is into this zone. Multiplying by 217 gives a value between 0 and 217,
while

⌊
x+ 1

2

⌋
rounds a number x to the nearest integer. The interval of latitudes

inside a zone that are mapped to a particular number is referred to as a bin,
and the number they map to as the bin number. The latitude to be recovered is
in the center of this interval, and is referred to as the bin centerline. The final
truncation to 17 bits to determine ŶZ i may appear to discard some information,
but in actuality only affects half of a bin at the top of a zone, and is accounted
for by the adjacent zone.

In order to compute the longitude portion of the message, the NL value of
the encoded latitude must be determined. To do so, the latitude that is intended
to be decoded is computed as

r lat = dlati

(⌊
lat

dlati

⌋
+

YZ i

217

)
.

The NL value of r lat is then used to compute the longitude equivalent of
dlati as follows.

dloni = 360/max{1,NL(r lat)− i}. (6)

Note that the denominator in the above expression uses the max operator
for the case of latitudes beyond ± 87 degrees, where there is only one longitude
zone. In this case the even and odd longitude encodings are identical.

6

With dloni calculated, the encoding of a longitude lon is nearly identical to
that of latitude.

XZ i =

⌊
217

mod(lon, dloni)

dloni
+

1

2

⌋
. (7)

The longitude message is the final 17 bits of this value.

X̂Z i = mod(XZ i, 2
17). (8)

The final message to be broadcast is then the concatenated string of bits
(i, ŶZ i, X̂Z i) (see Figure 2). In theory, it would be desirable to have the mes-
sages sent strictly alternate between odd and even. In practice, the format for
broadcast is chosen by any number of methods (including randomly) to ensure
an equiprobable distribution.

Fig. 2. The 35 bit CPR message. One bit determining the format, and 17 each for
latitude and longitude.

It is worth noting that every latitude lat can be exactly and uniquely deter-
mined by the following formula.

lat = dlati

(⌊
lat

dlati

⌋
+

217mod(lat, dlati)/dlati
217

)
. (9)

The only difference between this and the value intended to be recovered is
in the rounding of 217mod(lat, dlati)/dlati to the nearest integer, which induces
an error of at most 1/2. Hence the upper bound for the difference between a
latitude and its correctly encoded and decoded value is dlati/2

18. Similarly, a
longitude and its recovered value should differ by no more than dloni/2

18.

The formal development includes specification of the encoding algorithm as
a single function encode that takes as parameters the format i, and lat, lon, the
latitude and longitude to encode, and returns the pair (ŶZ i, X̂Z i) containing the
encoded latitude and longitude. The following lemma, formally proven in PVS,
ensures that the encoding fits into the available space for broadcast.

Theorem 2. For all i ∈ {0, 1}, latitudes lat and longitudes lon, if (Y,X) =
encode(i, lat, lon), then Y and X are integers and

0 ≤ X,Y < 217.

7

2.3 Local Decoding

Since a broadcast message corresponds to a position inside each zone, in order
to recover the correct position, one needs only to determine which zone is the
correct one, and in the case of longitude, how many zones there are.

Local decoding does this using a reference position that is known to be near
the broadcast position. This can be a previously decoded position, or known
by some other means. The concept is simple, and uses the observation that the
interval one zone wide centered around any position contains exactly one point
corresponding to each bin centerline.

From this reasoning, it would seem to follow that if the target and the ref-
erence position are separated by at most half the length of a zone, the decoding
should be reliable. This is the requirement given in the standards document [7]
for local decoding. However, during the formal analysis, it was discovered that
this is too generous, as proven in Theorem 3 below.

The local decoding uses the following formula to calculate the zone index
number j of the target using the format i, the latitude message ŶZ i, and a
reference latitude latref .

j =

⌊
latref
dlati

⌋
+

⌊
1

2
+

mod(latref , dlati)

dlati
− ŶZ i

217

⌋
. (10)

The first term in this sum calculates which zone the reference latitude lies in,
while the second term adjusts it by -1, 0, or 1 based on the difference between
the reference latitude and the broadcast message. This value is then used to
compute the recovered latitude r lat using the following formula.

r lat = dlati

(
j +

ŶZ i

217

)
. (11)

This decoded latitude is used to determine the NL value used for encoding
the longitude, which is then used to determine the value of dloni by Formula (6).

Using dloni, a reference longitude lonref , and the longitude message X̂Z i, the
longitude zone index m and recovered longitude rlon are determined nearly
identically to the latitude case.

m =

⌊
lonref
dloni

⌋
+

⌊
1

2
+

mod(lonref , dloni)

dloni
− X̂Z i

217

⌋
. (12)

rlon = dloni

(
m+

X̂Z i

217

)
. (13)

Local decoding is specified as a pair of functions Rlati and Rloni. The func-
tion Rlati takes as input a reference latitude latref , a format i, and a non-negative
integer Y less than 217 meant to be an encoded latitude. The function Rloni

takes an entire reference position latref , lonref , a format i and a pair Y,X of
non-negative integers at most 217 meant to be the encoded pair. The longitude

8

decoding requires the latitude inputs in order to calculate the correct NL value
to decode with.

The two main theorems concerning local decoding are with respect to the re-
quirements for correct decoding. The first states that the published requirements
are not sufficient for local decoding.

Theorem 3. For each format i, there exist latitudes lat, latref with |lat−latref | <
dlati
2 , but

|lat−Rlati(latref , i, ŶZ i)| > 5.9,

where (ŶZ i, X̂Z i) = encode(i, lat, lon).

The value of 5.9 is in degrees latitude, which at a longitude of 0 is more than 300
nautical miles. This theorem is formally proven in PVS by giving actual latitude
values that decode incorrectly. One such pair, for even encoding, is

lat = 71582788 ∗ 360/232 ≈ 5.99999997765,

latref = 35791394 ∗ 360/232 ≈ 2.99999998882.

The next theorem states that local decoding does work properly for the set of
tightened requirements, which reduce the bound between position and reference
by 1/2 bin.

Theorem 4. For all pairs of positions (lat, lon), (latref , lonref), let (ŶZ i, X̂Z i) =
encode(i, lat, lon). If

|lat− latref | <
dlati

2
− dlati

218
,

then

|lat−Rlati(latref , i, ŶZ i)| ≤
dlati
218

,

Furthermore, if dloni is calculated using this decoded latitude, and

|lon− lonref | <
doni

2
− dloni

218
,

then

|lon−Rloni(latref , lonref , i, ŶZ i, X̂Z i)| ≤
dloni
218

.

2.4 Global Decoding

Global decoding is used when an approximate position for the target is unknown.
This can occur when a target is first encountered, or when messages have not
been received for a significant amount of time.

Similar to local decoding, the receiver must determine the correct zone in
which the broadcast message lies, as well as (for longitude) the number of zones.
Global decoding does this through means of a pair of messages, one of each

9

format type. Using a method that is essentially the Chinese Remainder Theorem,
the algorithm determines the number of zone offsets (the difference between an
odd zone length and an even zone length) from the origin (either equator or prime
meridian) to the broadcast position. This can be used to determine the zone for
either message type, and hence used to decode either message. The most recently
received message is used to provide more accurate information. Similar to the
local decoding, it seems that this should tolerate pairs of positions separated
by no more than half of a zone offset, since this is the critical parameter in the
computation. The formal analysis shows that this is too generous, as proven in
Theorem 5 below.

The first step in global decoding is to determine j, which is the number of
zone offsets between the southern boundaries of the two encoded latitudes.

j =

⌊
59ŶZ 0 − 60ŶZ 1

217
+

1

2

⌋
.

In order to convert this into the correct zone index number for the even or
odd message to be decoded, the positive value modulo 60− i is calculated. This
is then used to determine the recovered latitude, as follows.

r lat = dlati

(
mod(j, 60− i) +

ŶZ i

217

)
. (14)

For global decoding of longitude, care must be taken that both the even and
odd messages being used were calculated with the same number of zones. As
such, both even and odd latitude messages are decoded, and the NL values for
each are determined. If they differ, the messages are discarded and not decoded
until further broadcast meet this criterion. In the case both recovered latitudes
have the same NL value, longitude decoding proceeds as follows, where nl is the
common NL value computed, dloni is calculated according to Formula (6), and
ni = max{nl − i, 1}.

Calculate m, the number of zone offsets between the western zone boundaries
of the messages.

m =

⌊
(nl − 1)X̂Z 0 − nlX̂Z 1

217
+

1

2

⌋
.

Convert this value to a zone index number by taking the positive value mod-
ulo ni, and use this to determine the recovered longitude.

rlon = dloni

(
mod(m,ni) +

X̂Z i

217

)
. (15)

Global decoding is specified as a pair of functions Rlatg and Rlong. The
function Rlatg takes as inputs a format i and natural numbers Y0, Y1 meant to
be odd and even latitude messages. The function Rlong takes as inputs a format
i and four numbers Y0, Y1, X0, X1 meant to describe odd and even messages

10

of latitude and longitude. Each latitude message is decoded, and the NL value
computed. If the values do not match, the computation is aborted. If they do,
the function returns both the even and odd decoded longitude.

As with local decoding, there are two accompanying theorems. In the follow-
ing, the latitude zone offset is denoted by ZOlat. This is calculated as ZOlat =
dlat1− dlat0. Similarly, ZOlon = dlon1− dlon0 where it is assumed that the NL
value used is known from the context.

Theorem 5. For each format i, there exist latitudes lat0, lat1 with |lat0−lat1| <
ZOlat

2 , but

|lat−Rlatg(i, ŶZ 0, ŶZ 1)| > 5.9,

where (ŶZ j , X̂Z j) = encode(j, lat, lon) for j ∈ {0, 1}.

Again, the units of 5.9 are degrees latitude, which corresponds to over 30 nautical
miles at longitude 0. This theorem is formally proven in PVS by giving actual
latitude values that decode incorrectly. One such pair, which decodes incorrectly
using either format, is

lat0 = 363373617 ∗ 360/232 ≈ 30.4576247279,

lat1 = 363980245 ∗ 360/232 ≈ 30.5084716994.

The next theorem states that the tightened requirements, given by shrinking
the bound by the size of one odd bin, suffice for proper global decoding.

Theorem 6. For all pairs of positions (lat0, lon0), (lat1, lon1), let (ŶZ j , X̂Z j) =
encode(j, lat, lon) for j ∈ {0, 1}. If

|lat0 − lat1| <
ZOlat

2
− dlat1

217
,

then

|lat−Rlatg(i, ŶZ 0, ŶZ 1)| ≤ dlati
218

,

for each i ∈ {0, 1}. Furthermore, if these decoded latitudes have a common NL
value, dloni is calculated using this value, and

|lon− lonref | <
ZOlon

2
− dlon1

217
,

then

|lon−Rlong(i, ŶZ 0, ŶZ 1, X̂Z 0, X̂Z 1)| ≤ dloni
218

for each i ∈ {0, 1}.

These correctness theorems, while lacking the need for groundbreaking mathe-
matical insight to formulate, are nonetheless long and difficult proofs to develop
in an interactive proof system. For example, the proof of the correctness for
only the longitude portion of the global correctness theorem is composed of 763
individual proof commands.

11

3 Practical Results

The main practical results of the formal analysis conducted are essentially in
two categories. The first set of results, presented in Section 3.1, concerns the
requirements for both local and global decoding. As discussed in Section 2.3 and
Section 2.4, the formal analysis led to the discovery of examples that meet the
stated algorithmic requirements for decoding, but decode incorrectly. A set of
tightened requirements were discovered that are formally proven to guarantee
correct decoding. In addition to the algorithmic requirements, an arguably less
restrictive operation requirement is developed for global decoding. This proposed
requirement allows for CPR applications for aircraft with a much wider perfor-
mance envelope than the original specification, as well as a longer possible time
delay between received messages.

The second set of results, in Section 3.2, examine expressions in the CPR
algorithm, and give mathematically equivalent, but in a simpler or numerically
more stable form. These equivalent expressions are meant to assist implementors
of the CPR algorithm in creating more reliable code.

3.1 Decoding Requirements

The requirement stated in [7] for local decoding is that the reference position
and the encoded position must be within 1/2 of a zone to guarantee correct
decoding. As mentioned in Section 2, this stems from the fact that an interval
one zone long, centered at the reference position, encounters exactly one bin
centerline for each possible broadcast message, so only one recovered position is
possible. While this statement is true, it is not necessarily true that the position
being within 1/2 zone from the reference position ensures that the corresponding
bin centerline is within 1/2 zone of the reference position. For example, if the
reference position is slightly above a bin centerline, then the half-bin at the
bottom of the 1 zone length interval centered around the reference position is
mapped to a bin centerline that occurs outside of this one zone region. The bin
centerline with the same number, but lying inside the one zone region, occurs
at the top of this region. Hence local decoding in this case is inaccurate by the
size of one zone, approximately 360 nautical miles, as is the case in the example
after Theorem 3.

During the formal analysis, several examples illustrating this phenomenon
were discovered, and this discovery led to the tightened requirement of the target
position and reference position being required to be separated by no more than
half a zone minus half of a bin for reliable local decoding.

For global decoding, the requirement in [7] is that the two messages used are
received within ten seconds of each other. This is based on two conditions. The
first condition is a restriction on the performance limits of the aircraft to which
the standard applies. The second condition is an algorithmic restriction. The
document states that the positions for the odd and even messages be separated
by no more than half of a zone offset to ensure reliable decoding. As with local
decoding, this algorithmic condition is nearly correct, but fails to account for the

12

positions not being on the bin centerline. The correct requirement is that the bin
centerlines of the encoded positions be within 1/2 zone offset. Since a position
is at most half of a bin size away from the corresponding centerline, shrinking
the original requirement by one odd bin size is sufficient to guarantee correct
global decoding. As with the local decoding, examples were discovered that meet
the published algorithmic requirement, but decode incorrectly by the length of
one zone, approximately 360 nautical miles, as is the case in the example after
Theorem 5.

The published global decoding requirement enforces the closeness of the orig-
inal positions of the two messages by means of a limit on the time between two
messages, paired with a limit on the speed of the aircraft. While this is a testable
and practical method of enforcing the algorithmic requirements, it limits the
applications that can be correctly decoded due to speed assumptions5, while
artificially limiting the time between messages for slow moving targets.

To loosen this restriction, while still providing a testable and practical method
for guaranteeing that the even and odd pair of messages meet the global decoding
algorithmic requirements, the following alternative requirement is proposed.

The receiver waits for three alternating messages, either even-odd-even or
odd-even-odd, where it is known (through a time restriction or some other
means) that the first and last messages were broadcast without having trav-
elled more than 1/2 zone. In addition, the difference between the values of the
first and last messages transmitted should be less than 1000 (modulo 217). The
second condition ensures that the bookend messages were broadcast within 1/2
zone offset (minus an odd zone) of each other, unless they are separated by a
full zone, which is impossible by the first condition. For longitude decoding, the
NL value of all three latitudes messages must also stay constant. The proposed
requirement allows for a much longer time frame to collect messages, even with
an increased performance threshold for the target. It also more directly enforces
the actual algorithmic requirement.

3.2 Numerical Simplifications

In addition to the formal specification and proof of the algorithm with the tight-
ened requirements, the formal analysis revealed several expressions in the CPR
algorithm that can be simplified or rewritten in a way that is mathematically
equivalent, but numerically simpler. Each pair of equivalent formulas was spec-
ified in PVS, and proven to be equal.

The formula for calculating the NL table, used as a lookup-table for calcu-
lating NL values for a latitude is given in Formula (2). An equivalent version,
removing four operations in total, is defined as follows.

latNL(nl) =
180

π
arccos

(
sin(π/60)

sin(π/nl)

)
. (16)

5 This is an issue that affects the usability of ADS-B for hypersonic aircraft and for
sub-orbital applications, both of which are poised to become more ubiquitous in the
near future.

13

The remainder of the simplifications essentially rely on two observations.
The first observation is that when the mod operator is divided by its second
argument, a cancellation can be made instead of a division. That is,

mod(a, b)

b
=
a− b ∗

⌊
a
b

⌋
b

=
a

b
−
⌊a
b

⌋
. (17)

The second observation is that the floor function and addition of integers are
commutative. That is, for any number x and any integer z,

bz + xc = z + bxc. (18)

Using the simplifications of Formula (17) and Formula (18) on the local
decoding formulas (10) and (12) yields

j =

⌊
1

2
+
latref
dlati

− ŶZ i

217

⌋
, (19)

and

m =

⌊
1

2
+
lonref
dloni

− ŶZ i

217

⌋
. (20)

The most significant simplification is in the encoding algorithm, and applies
to both latitude and longitude. Let x denote the position, either latitude or
longitude, and let dl denote dlati or dloni accordingly, then Formula (4) and
Formula (7) can be simplified as follows.⌊

217
mod(x, dl)

dl
+

1

2

⌋
=

⌊
217

x

dl
+

1

2

⌋
− 217

⌊ x
dl

⌋
. (21)

The simplifications presented in this section reduce the number of operations
overall and remove computation of several expressions that strictly cancel math-
ematically. For instance, on the right hand side of Formula (21), once the term
x/dl is computed, the subtracted term can be calculated exactly as an integer.

4 Animation of the CPR Specification

In contrast to a programming language, PVS is designed to manipulate and rea-
son about real numbers. For example, the value of π in PVS is the real, irrational,
transcendental number that exactly relates a diameter to a circumference. In this
paper, the exact, ideal version of an algorithm or quantity is referred to as the
platonic version. For instance, the functions presented in Section 2 correspond to
the platonic version of CPR. However, since the CPR algorithm is implemented
on actual hardware, numerical imprecisions are unavoidable. In addition to the
formal verification of the CPR algorithm, the formal specification of CPR was
used to compare in a set of inputs the evaluation of the platonic algorithm versus
the algorithm implemented in both single and double precision floating-point.

14

To achieve this goal, the CPR specification is written in a way that arithmetic
operators can be ground-evaluated in PVSio [5] using semantic attachments [1].
PVSio allows for the evaluation of PVS functional specifications using the ground
evaluator. A semantic attachment is a Lisp function that is called by the ground
evaluator when a particular function is not evaluable in PVS, e.g., square root,
trigonometric functions, etc. Since semantic attachements are external to the
PVS logic, ground evaluations in PVSio may not be logically sound. However,
PVSio provides a practical way to quickly test a PVS specification on concrete
values. See [2] for more details.

PVSio and, in particular, semantic attachments enable the evaluation of CPR
functions on concrete inputs using different computation models, e.g., real arith-
metic, single or double floating-point arithmetic, etc. Using this method on the
latitude encoding, it has been checked that the right-hand side of Formula (21)
performed in double precision floating-point agrees with the platonic calculation
for all angular weighted binary (AWB) latitudes [4]. These are latitudes of the
form n · 360232 with n a whole number, and are a widely used format for providing
position. Furthermore, a test of the standard formulation of the latitude en-
coding using Formula (4) revealed that when performed with double precision
floating-point, the encoding differed from the correct value by 1 in 27,259 cases.
While this is a relatively small number compared to the 232 test cases, it shows
how different expressions of the same quantity may lead to numerical errors in
calculation.

The animation of the CPR specification also confirmed reported observations
that a straightforward implementation of CPR in single precision floating-point
arithmetic is unsound. The appendix T of [7] includes several tables containing
the expected output of the CPR algorithm on a reduced set of AWB latitudes.
Encoding these latitudes in a single precision implementation of Formula (4), re-
sulted in 162 wrong encodings (with respect to the expected output in Appendix
T) over a total of 232 input AWB latitudes. In the case of local decoding, 46
encoded positions over a total of 116 were wrongly decoded by using single preci-
sion floating-point numbers. Finally, in the case of global decoding, the number
of wrong cases detected was 28 out of 116.

5 Conclusion

This paper presents a formal analysis of the CPR algorithm used for encod-
ing and decoding position messages for ADS-B broadcast. The formal analysis
includes a formal specification in PVS and a proof of the correctness of the algo-
rithm for a set of tightened requirements from those originally proposed. These
tightened requirements are also shown to be necessary, by proving that there
exist positions meeting the original requirements, but not decoding to a correct
position.

The paper also presents a collection of simplifications of some the mathemat-
ical expressions used in the algorithm, which are proven to be mathematically
equivalent to the original expressions, but also shown to be numerically simpler

15

in the sense that the expressions evaluate in floating-point to values closer to the
platonic computation. The evaluation of these simplifications was aided by an
approach in the formal specification that allowed for the evaluation of arithmetic
operators in a variety of computation models. This approach may be useful out-
side of the current work to examine the effect of numerical imprecision on the
floating-point implementation of a platonic algorithm.

A possible further direction is the completion of the formal analysis for the
two types of CPR messages, coarse and surface, that were not addressed in this
work. This would not be theoretically difficult, as the existing specification and
proofs would serve as a clear roadmap, but would take a significant amount of
work. An area of current research is the formal numerical analysis of fixed-point
and floating-point implementations of CPR. This analysis will enable the devel-
opment of formally verified CPR implementations that could serve as reference
implementations of the standard mathematical definition.

References

1. Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and David Stringer-
Calvert. Evaluating, testing, and animating PVS specifications. Technical report,
Computer Science Laboratory, SRI International, Menlo Park, CA, March 2001.
Available at http://www.csl.sri.com/users/rushby/abstracts/attachments.

2. Aaron Dutle, César Muñoz, Anthony Narkawicz, and Ricky Butler. Software vali-
dation via model animation. In Jasmin Blanchette and Nikolai Kosmatov, editors,
Proceedings of the 9th International Conference on Tests & Proofs (TAP 2015),
volume 9154 of Lecture Notes in Computer Science, pages 92–108, L’Aquila, Italy,
July 2015. Springer.

3. Code of Federal Regulations. Automatic Dependent Surveillance-Broadcast (ADS-
B) Out equipment and use., 91 C.F.R., Sect. 225. 2015.

4. ICAO. Manual on the Universal Access Transceiver (UAT)., volume 9861 of Doc
(International Civil Aviation Organization). 2012.

5. César Muñoz. Rapid prototyping in PVS. Contractor Report NASA/CR-2003-
212418, NASA, Langley Research Center, Hampton VA 23681-2199, USA, May
2003.

6. Sam Owre, John Rushby, and Natarajan Shankar. PVS: A Prototype Verification
System. In Deepak Kapur, editor, Proceeding of the 11th International Conference
on Automated Deductioncade, volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752. Springer, June 1992.

7. RTCA SC-186. RTCA-DO-260B, Minimum Operational Performance Standards for
1090 MHz extended squitter Automatic Dependent Surveillance - Broadcast (ADS-
B) and Traffic Information Services - Broadcast (TIS-B), December 2009.

16

