
A provably correct floating-point implementation of
Well Clear Avionics Concepts

Nikson Bernardes Ferreira∗, Mariano M. Moscato†, Laura Titolo†, and Mauricio Ayala-Rincón∗‡

∗Department of Computer Science
‡Department of Mathematics

University of Brasilia, Brasilia, Brazil
Email: niksonber@gmail.com, ayala@unb.br

†National Institute of Aerospace, Hampton, USA
Email: {mariano.moscato,laura.titolo}@nianet.org

Abstract—The NASA DAIDALUS library provides formal
definitions for Detect-and-Avoid avionics concepts such as when
an aircraft is well-clear with respect to the surrounding air
traffic, i.e., it does not operate in such proximity to create a
collision hazard. While several properties are proven correct
for DAIDALUS assuming ideal real number arithmetic, an
actual implementation that uses floating-point numbers may
behave unexpectedly because of round-off errors and run-time
exceptions. This paper presents an experience report on the
application of a formal methods toolchain to extract and verify
floating-point C code from a real-valued specification of the well-
clear module of DAIDALUS. This toolchain comprises the PVS
theorem prover, the PRECiSA floating-point analyzer and code
generator, and the Frama-C analysis suite. The generated code
is automatically instrumented to detect when the control flow
of the floating-point program may diverge from the ideal real
number specification, and it is annotated with contracts that
state the maximum accumulated round-off error. The absence
of overflows is also formally verified for the generated code. In
order to apply the toolchain to an industrial case study such
as DAIDALUS, a formally verified pre-processing of the input
specification is performed, which includes a program slicing and
several semantic-preserving simplifications.

Index Terms—Program Verification, Floating-Point, PVS,
Detect-and-Avoid

I. INTRODUCTION

Midair conflicts are one of the most dangerous situations
that may occur in the airspace domain. The USA Federal
Aviation Administration (FAA) reported that over forty midair
collisions occurred from January 2009 through December
2013 [1]. To mitigate such situations, the FAA introduced
the concept of See and Avoid. In short, it poses the person
operating an aircraft the responsibility to remain vigilant to
see and avoid nearby traffic [2]. The advent of Unmanned
Aerial Systems (UAS) and their incorporation into the airspace
provoked the need to restate this concept in terms suitable for
aircraft with no crew onboard. The Detect and Avoid (DAA)
concept emerged then as an effort to support the integration of
UAVs into civil airspace. Noticeably, DAA must pose collision
avoidance responsibilities on the system.

Research by L. Titolo and M. Moscato was supported by the National
Aeronautics and Space Administration under NASA/National Institute of
Aerospace Cooperative Agreement NNL09AA00A..

Diverse industrial and governmental actors proposed al-
gorithmic DAA solutions. Among them, NASA developed
the Detect and Avoid Alerting Logic for Unmanned Systems
library (DAIDALUS1) [3]. DAIDALUS provides prototypical
open-source implementations in Java and C++, which were
included as reference implementations of the DAA functional
requirements described in RTCA’s Minimum Operational Per-
formance Standards (MOPS) DO-365 [4]. One distinguishing
characteristic of DAIDALUS is that it also provides formal
specifications of the algorithms along with proofs for cor-
rectness and safety properties on them, mechanically checked
within the Prototype Verification System (PVS) [5]. These
proofs assume ideal real number arithmetic. However, when
implemented using floating-point arithmetic, the properties
may no longer hold because of round-off errors and runtime
exceptions. The adherence of the implementations to the
behavior modeled by the formal specifications was checked
using a testing-based approach [6]. While such an approach is
usually enough for non-critical applications, the correctness
of DAA implementations requires a higher level of assur-
ance. Given the numerical nature of several functions in
DAIDALUS, it is important to provide formal guarantees on
the finite-precision implementation concerning the expected
behavior specified using real-numbers arithmetic.

In the past, an integrated toolchain has been proposed to
automatically extract and verify floating-point C code from
real-valued specifications [7]. This toolchain consists of the
PVS theorem prover, the PRECiSA floating-point analyzer
and code generator [8], [9], and the Frama-C tool suite [10].
In a nutshell, PRECiSA automatically generates a floating-
point C implementation from a PVS real number specification.
The extracted C code contains program contracts that relate
the floating-point computations with their ideal counterpart
by the maximum round-off error that may occur. These
contracts enable the use of the Frama-C analysis suite which
automatically generates a set of verification conditions that
can be proven correct with the help of diverse backends. The
toolchain proposed in [7] included a customization on Frama-
C that allowed it to generate the verification conditions in

1DAIDALUS is available at https://github.com/nasa/daidalus.

https://github.com/nasa/daidalus

the language of PVS and connect them with the NASA PVS
library (NASALib).

In [7], this technique was applied to one of the core
functions of DAIDALUS. This paper describe the application
and adaptation of this technique to one of the main modules
in DAIDALUS which is devoted to the definition of well-clear
concepts. Two aircraft are considered to be well clear of each
other if appropriate distance and time variables determined by
the relative aircraft states remain outside a set of predefined
threshold values. In other words, an aircraft is well clear when
it is considered safe in relation to the surrounding traffic;
therefore, midair collisions are not expected.

The toolchain presented in [7] could not be applied directly
to the DAIDALUS specification because the code generation
capability of PRECiSA, at its current stage, does not support
some of the features of the PVS language used to formally
define Well-Clear, such as abstract data types and higher-
order functions. In addition, the complexity of the target
module, given by the number and nature of the interactions
between the functions composing it and the wide ramification
of the control flow graph of the whole library, impacts on
the efficiency of the analysis performed by PRECiSA and the
legibility of the results of this analysis. In order to make the
DAIDALUS specification manageable by the toolchain, this
paper proposes to apply a semantic-preserving program slicing
on a simplification from higher-order to first-order declara-
tions. This program rewriting improved the performance of
the generation and verification of the C code significantly. The
obtained program is formally proven equivalent to the original
specification under the PVS theorem prover. In addition, a new
PVS floating-point formalization is used. This formalization
extends the one used in [7] with explicit handling for special
values such as NaNs and infinities. While this change impacted
positvely the analisys by enabling the formal verification of the
absence of these values in the code generated by PRECiSA and
improving significantly the performance of the type checking
in PVS, it also provoked that much of the proof strategies
developed in the past were not longer usable. Part of the work
presented in this paper consisted in fixing and adapting the
proofs generated by PRECiSA to this new formalization.

The paper is organized as follows. Section II describes
DAIDALUS and explains the well-clear concept. An overview
of the analysis approach is presented in Section III. The
application of the slicing technique to the original specification
is detalied in Section IV. Then, Section V explains the code
extraction and the program instrumentation used to detect
control-flow divergences between real and floating-point com-
putations and how these conditions are verified using Frama-C
and PVS. Finally, Section VI provides a brief discussion of the
most relevant outcomes of this work, Section VII discusses the
related work, and Section VIII concludes the paper.

II. THE DAIDALUS LIBRARY

DAIDALUS is a software library developed at NASA that
implements a Detect-and-Avoid alerting logic for unmanned

systems. In DAIDALUS, the condition of Well-Clear is de-
fined in the context of an encounter between two aircraft,
usually called the ownship and the intruder. These conditions
are stated in an intruder-centered manner, meaning that the
information describing the encounter is expressed relative to
the state of the intruder. In particular, DAIDALUS includes
definitions determining when the aircraft are in a situation
of violation of well-clear. This violation occurs when (a) the
two aircraft are already close enough, or (b) they will be
close enough if they keep the same orientation and velocity.
This notion is expressed in terms of horizontal and vertical
well-clear violation. The former is formalized by (1), where
two-dimensional vectors are used to describe the horizontal
position (sh) and velocity (vh) of the ownship with respect to
the intruder [11]. In the following, ∥ ⋅ ∥ denotes the Euclidean
norm.

WCVH(sh,vh)
def
= ∥sh∥ ≤ δd ∨ (0 ≤ τmod(sh,vh) ≤ δt∧

dcpa(sh,vh) ≤ δhmd)
(1)

The values δd, δt, and δhmd are parameters of the model,
used as thresholds for distance and time. The function τmod,
defined below, is an approximation for the time of closest point
of approach, i.e., the instant in which both aircraft would be
closer to each other than in any other moment. Below and in
the rest of this paper, the dot product between two vectors (for
example, a and b) is denoted by their juxtaposition (ab).

τmod(sh,vh)
def
=

⎧⎪⎪
⎨
⎪⎪⎩

δ2d−s
2
h

shvh
if shvh < 0

−1 otherwise
(2)

The function dcpa calculates the projected horizontal distance
between the aircraft at their closest point of approach, assum-
ing the velocity and orientation remain constant. The definition
of dcpa relies on the actual calculation of the time of closest
point of approach (tcpa). Both notions are formally stated
below.

dcpa(sh,vh)
def
= ∥sh + tcpa(sh,vh)vh∥ (3)

tcpa(sh,vh)
def
=

⎧⎪⎪
⎨
⎪⎪⎩

sh⋅vh
v2
h

if ∥vh∥ > 0

0 otherwise
(4)

The violation of vertical well clear is defined analogously
to its horizontal counterpart; using the scalars vertical position
sz and velocity vz , and the time to co-altitude (tcoa) instead
of the time to the closest point of approach.

WCVV(sz, vz)
def
= ∣sz ∣ ≤ δz ∨ 0 ≤ tcoa(sz, vz) ≤ δtcoa (5)

tcoa(sz, vz)
def
=

⎧⎪⎪
⎨
⎪⎪⎩

−sz
vz

if szvz < 0

−1 otherwise
(6)

Given their relative position and velocity, two aircraft are
considered to be in well-clear violation when both horizontal
and vertical violations occur. In the following equation, s are
v are vectors of dimension 3 and the subindices x, y, and z
are used to denote the projection of their first, second, and
third component respectively.

WCV(s,v) ⇐⇒ WCVV(sz,vz) ∧ WCVH(sh,vh) (7)

where sh
def
= (sx, sy) and vh

def
= (vx,vy).

The DAIDALUS library also provides conflict detection
algorithms whose purpose is to check whether the well-clear
condition is predicted to be violated within a given timeframe.
The function WCVintV computes a time interval, included in
a given lookahead lapse t = [b, t] ⊂ R, in which vertical well-
clear is violated at every moment. If no such interval exists,
the empty set is returned.

WCVintV(t, sz, vz)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t if vz = 0 ∧ ∣sz ∣ ≤ δz

∅ if vz = 0 ∧ ∣sz ∣ > δz

[max(b, −sign(vz)max(δz,δtcoa∣vz ∣)−sz
vz

),

min(t, −sign(vz)δz−sz
vz

)] if vz ≠ 0 ∧ b ≤ c0, cF ≤ t

∅ otherwise

(8)

Similarly, the function WCVintH returns a time interval
included in [0, t] in which the condition of horizontal well-
clear is violated at every moment, if such interval exists.

WCVintH(t, sh,vh)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, t] if a = 0 ∧ s2
h ≤ δ

2
D

[0,min(t,Θ+

sh,vh
)] if a ≠ 0 ∧ s2

h ≤ δ
2
D

∅ if s2
h > δ

2
D ∧ (shvh ≥ 0 ∨∆a,b,c < 0)

[max(0, r−a,b,c),min(t,Θ+

sh,vh
)]

if s2
h > δ

2
D ∧ shvh < 0 ∧∆a,b,c ≥ 0∧

∆R×R
sh,vh

≥ 0 ∧ r−a,b,c ≤ t

∅ otherwise

(9)

where a def
= v2

h, b def
= 2 shvh+δtv

2
h, c def

= s2
h+δtshvh−δ

2
D, ∆a,b,c

def
=

b2−4ac, r−a,b,c
def
=
−b−
√

∆a,b,c

2a
, Θ+

sh,vh

def
=
−shvh+

√

∆
v2
h
,shvh,s

2
h
−δ2
D

v2
h

,

and ∆R×R
sh,vh

def
= δ2

Dv
2
h − (shvh

�)2.
The two functions defined above can be used to calculate a

time interval of well-clear violation.

WCVint(t, s,v)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ if V = ∅

V if V = {t} ∧ WCVH(sh + tvh,vh)

∅ if V = {t} ∧ ¬WCVH(sh + tvh,vh)

∅ if #(V) > 1 ∧H = ∅

[lb(H) + lb(V), ub(H) + lb(V)] otherwise

(10)

where lb and ub return the lower and upper
end-point of a given non-empty closed interval,
respectively, V def

= WCVintV(t, sz,vz), and H def
=

WCVintH(tend, (sx, sy), (vx,vy)) calling t = [tbegin, tend].
The predicate WCV? determines if there is a subinterval of

t where a violation of well-clear occurs.

WCV?(t, s,v) ⇐⇒ WCVint(t, s,v) ≠ ∅ (11)

The equations in this Section are a simplified version of the
definitions originally presented in [12] where properties and
additional definitions can be found.

III. VERIFICATION APPROACH

The verification approach used in this paper relies on the
integrated toolchain presented in [7] which is composed of
several formal methods tools:

● PRECiSA [8], [9], a static analyzer for floating-point
programs,2

● the global optimizer Kodiak [13],3

● Frama-C [10], a collaborative tool suite for the analysis
of C code, and

● the Prototype Verification System (PVS) [14], a verifica-
tion environment consisting of a specification language,
a large number of predefined theories, and an interactive
theorem prover.

PRECiSA is a static analyzer for floating-point programs
that computes sound and accurate round-off error estimations
and provides support for a large variety of mathematical
operators and programming language constructs. Given a
floating-point program, PRECiSA generates a symbolic error
expression modelling an over-approximation of the round-off
error that may occur in that program. This error expression
is a function of the input variables of the program and their
associated rounding error. Given input ranges for these vari-
ables, PRECiSA uses the Kodiak global optimizer to maximize
the round-off error expressions. PRECiSA generates formal
certificates ensuring that these bounds are correct with respect
to the floating-point IEEE-754 standard. These certificates
are output in the language of PVS, which can be used to
mechanically check their validity. Even though proofs in PVS
are expected to be carried out under user guidance in general,
this check is automatic thanks to an available collection of
proof strategies targeted to this particular application.

One of the more recent extensions of PRECiSA [7], con-
sisted in the addition to the tool of a code-extraction capability
that automatically generates a floating-point C implementation
from a real-number function expressed in the language of PVS.
The generated C code is instrumented to detect whether the
floating-point computational flow diverges from its ideal real
number counterpart, and it is automatically annotated with
program contracts stating the formal relationship between real
and floating-point computations. These contracts are written
in the ANSI/ISO C Specification Language (ACSL) which
can be processed by Frama-C. Frama-C is a collaborative
modular platform for the analysis of C programs. In this work,
the Frama-C weakest precondition (WP) plug-in is used to
generate verification conditions in the language of PVS and
it is customized to integrate the PVS certificates generated by
PRECiSA into the proof of such verification conditions.

An overview of the verification approach applied to the
well-clear calculations in DAIDALUS is depicted in Fig. 1.
First, the PVS higher-order specification of DAIDALUS is
manually rewritten using only first-order constructs. This op-
eration is necessary since PRECiSA does not provide support
for higher-order arguments. The first-order specification is

2PRECiSA is available at https://github.com/nasa/PRECiSA.
3Kodiak is available at https://shemesh.larc.nasa.gov/fm/Kodiak/.

https://github.com/nasa/PRECiSA
https://shemesh.larc.nasa.gov/fm/Kodiak/

mechanically proved equivalent to the higher-order one within
PVS. Then, a program slicing technique is applied to the first-
order specification to obtain a set of simpler descriptions. This
program slicing is proved to be semantically equivalent to the
original specification. The next Section provides more details
on the slicing process and the resulting fragmentation of the
specification.

Each specification slice is input to PRECiSA that automat-
ically extracts the corresponding annotated floating-point C
code and generates the corresponding PVS proof certificates
ensuring the correctness of the round-off error estimations
used in the code extraction and instrumentation. Since the
extracted C code implements each of the slices of the original
specification, it is necessary to develop a top-level module in C
providing the same functionality than the involved functions
in DAIDALUS. Basically, this top-level function must select
the proper slice given an unrestricted input and call the cor-
responding C function. The top-level function was manually
developed and annotated with specific program contracts to
assure its compliance with the original specification. The
details about this function are explained in Sect. ??.

Frama-C was used to analyze both the automatically gen-
erated C functions from each slice and the top-level function.
Finally, the verification conditions output by Frama-C were
proved in the PVS theorem prover. While these proofs were
made interactively for this particular application of the tech-
nique, they can be automated since they rely heavily on the
structure of the program. The automation of the proofs is left
as future work.

DAIDALUS
PVS Higher-order
Real Specification

PVS First-order
Real Specification

PVS sliced
Specification

PVS sliced
Specification

PVS sliced
Specification PRECiSA

Kodiak

PVS round-off errors
certificates

PVS

Instrumented
ACSL/C program

Frama-C

Verification
Conditions

Fig. 1. Workflow of the verification approach.

IV. SPECIFICATION SLICING

While Program Slicing [15], [16] is a technique generally
applied on source code to analyze particular behaviors of
software, in this work it was applied to the specification of the
definitions presented in Section II as a way to address scalabil-
ity issues in PRECiSA. The flavor of slicing used in this work
was first introduced by Canfora et al. [17] and Ning et al. [18]
and it is known as Conditioned Slicing [19]. Essentially, it
proposes the decomposition of a program into independent
simpler parts, called slices, according to its control flow graph

TABLE I
NAME OF THE MAIN PREDICATE ON EACH SLICE.

vertically descending: hovering: ascending:
horizontally vz < 0 vz = 0 vz > 0

still: vx = 0 ∧ vy = 0 WCV?↔↓ WCV?↔↑ WCV?↔⋅
moving: vx ≠ 0 ∨ vy ≠ 0 WCV?↓

⋅ WCV?↑
⋅ WCV?⋅

⋅

as defined by the guards in the branching instructions appear-
ing in the program. Each slice runs under the assumption of
specific restrictions on the inputs, determining the execution
of a particular path in the control flow graph of the original
program.

For this case study, the criterion used to select the restric-
tion on the inputs producing the slices was focused on the
different cases determined by the possible velocities of the
aircraft. Three possible situations regarding vertical velocity
were considered: hovering (null vertical velocity), ascending
(positive vertical velocity), and descending (negative vertical
velocity). In terms of horizontal velocity, only the cases mov-
ing horizontally or horizontally still were considered. Hence, a
total of six slices were defined by applying this criterion on the
predicate presented in (11) which is the top-most declaration
in the Well-Clear module. Table I shows the name of the top-
most predicate in each slice.

To exemplify how the slices are actually defined, Equa-
tion (12) shows the entry point for the slice describing a
situation of vertical hovering and horizontal movement, given
by the conditions vz = 0 and vx ≠ 0 ∨ vy ≠ 0.

WCV?↔⋅(t, s,v) ⇐⇒ (∣sz ∣ ≤ δz ∧

WCVH?↔⋅(tF − t0, sx + t0vx, sy + t0vy,vx,vy)) (12)

where WCVH?↔⋅ is a predicate checking whether the WCVintH
function from (9) returns a non-empty interval when the
restrictions imposed by the conditions defining the slice are
assumed to hold on the inputs.

WCVH?↔⋅(t, sh,vh) ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r+a,2shvh,s2h−δ2D
≥ 0 if s2

h ≤ δ
2
D

(0 ≤ r−a,b,c ≤ t ∧ r
−

a,b,c ≤ r
+

a,2shvh,s2h−δ
2
D
)∨

(r−a,b,c < 0 ∧ r+a,2shvh,s2h−δ2D
≥ 0)

if s2
h > δ

2
D ∧ shvh < 0 ∧∆a,b,c ≥ 0 ∧∆R×R

sh,vh
≥ 0∧

r−a,b,c ≤ t

false otherwise

(13)

being a, b, c, ∆a,b,c, r−a,b,c, and ∆R×R
sh,vh

as in (9), and

r+a,b,c
def
=

−b+
√

∆a,b,c

2a
. The following theorem validates that

the decomposition proposed by the slicing process correctly
captures the semantics of the original specification.

Theorem 1: [Slicing Correctness] For all time interval
t ⊂ R and all pair of three-dimensional vectors s,v ∈ R3,

WCV?(t, s,v) holds if and only if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WCV?↔↓(t, s,v) when vz < 0 ∧ (vx ≠ 0 ∨ vy ≠ 0)

WCV?↓
⋅
(t, s,v) when vz < 0 ∧ (vx = 0 ∧ vy = 0)

WCV?↔↑(t, s,v) when vz > 0 ∧ (vx ≠ 0 ∨ vy ≠ 0)

WCV?↑
⋅
(t, s,v) when vz > 0 ∧ (vx = 0 ∧ vy = 0)

WCV?↔⋅(t, s,v) when vz = 0 ∧ (vx ≠ 0 ∨ vy ≠ 0)

WCV?⋅
⋅
(t, s,v) when vz = 0 ∧ (vx = 0 ∧ vy = 0)

As one of the contributions of the present work, the def-
inition of the predicates in Table I and the theorem above,
along with all the ad-hoc lemmas needed in its proof, were
mechanically checked using the PVS theorem prover.

V. CODE EXTRACTION AND VERIFICATION

The round-off error occurring when floating-point expres-
sions in the guards of conditional constructs are evaluated
can provoke the execution of a control flow that does not
coincide with the flow executed on the same inputs but using
real-valued operations. The guards in a program where such
phenomenon can occur are called unstable conditions. As
another of its remarkable features, the code extracted by
PRECiSA is instrumented to emit a warning when an unstable
condition may occur. This instrumentation is based on the
program transformation presented in [20]. In the rest of this
section, the code extraction procedure is outlined. As part of
the verification presented in this paper, this procedure was
applied to each of the slices of the specification described in
the previous section.

A. Processing the slices

Given the specification of a real-valued program, understood
as a collection of functions collaborating to compute a de-
termined result, and the desired floating-point format (single
or double precision), PRECiSA replaces each real arithmetic
operator with its floating-point counterpart. Then it applies
the following instrumentation on the floating-point program:
all the guards in the conditional statements are replaced with
more restrictive conditions assuring the same control flow on
the real-valued specification would be executed by the current
inputs or emitting a warning to alert the possibility of an
unstable flow otherwise. The new guards take into account
the round-off error that may occur when the expressions in the
original conditions are evaluated in floating-point arithmetic.
It is worth noting that, since the round-off error estimation
computed by PRECiSA is a sound over-approximation of the
error that may occur, false warnings may arise. However, it is
guaranteed that all the instabilities are caught.

For instance, the floating-point function depicted below is
the result of applying this instrumentation on the function
τmod, defined by (2), which goal is to approximate the time
of closest point of approach of two aircraft. Here and in the

rest of this paper, the tilde over an operator or function stress
the fact that it operates on floating-point numbers.

τ̃ ′mod(sx, vx, sy, vy, ε) (14)
= if sx ∗̃ vx +̃ sy ∗̃ vy < −ε

then (δd ∗̃ δd −̃ sx ∗̃ sx +̃ sy ∗̃ sy) /̃ (sx ∗̃ vx +̃ sy ∗̃ vy)

elsif sx ∗̃ vx +̃ sy ∗̃ vy ≥ ε then −̃1

else ω

When the evaluation of sx ∗̃ vx +̃ sy ∗̃ vy lies in the interval
[−ε, ε) the function above signals a warning by returning the
value ω. The new argument of the function, ε, is expected
to be an over-approximation of the round-off error that may
occur when computing sx ∗̃ vx +̃ sy ∗̃ vy .

Listing 1 shows the C code and the ACSL annotations
generated by PRECiSA for the function τmod. The C function
taumod fp mimics the definition of τ̃ ′mod, while the annota-
tions express the contracts enforcing the properties explained
above. The type double′ is the implementation of a union type
consisting of the double datatype and the ω value4. In ACSL,
the keywords requires and ensures are used to describe pre-
conditions and postconditions of a function, respectively. The
main precondition of taumod fp (line 9) restricts ε to be a non-
negative and not infinite number, i.e., it cannot be a NaN value.
The postcondition in line 10 assures that when the result is not
ω, it is the same than the one computed by the floating point
version of τmod (before the instrumentation). The following
postcondition (line 11) states that, if additionally to the result
not being ω the argument ε is in fact an over approximation of
the round-off error of the guard of the conditional statement,
no unstable flows occur, meaning that either the guard is true
evaluated using floating-point and real-valued operations or
false under both semantics. This latter condition is expressed
by the predicate stable pathsτm defined in lines 5-7.

As already mentioned, PRECiSA is able to compute con-
crete error bounds for the guards when the user provides
specific ranges for the arguments. For instance, if the values
of the input variables are assumed to lie in the range [1,2] and
double precision floating-point precision is selected, PRECiSA
computes the round-off error bound ε = 3.55 × 10−15 for the
expression sx ∗vx+sy ∗vy . Notably, PRECiSA also generates Use

in-
put
ranges
that
makes
sense
with
unit
mea-
sures
and
com-
pute
the
er-
ror
with
PRE-
CiSA
(Laura)

a formal certificate of the validity of this bound, materialized
as a theorem that can be mechanically checked in the PVS
theorem prover. For the τmod example, such a theorem can be
expressed as it is shown below.

Theorem 2 (Error bound for the guard in τmod): For all real
values vx, vy, sx, sy and floating-point numbers ṽx, ṽy, s̃x, s̃y ,
if 1 ≤ vx, vy, sx, sy ≤ 2 and each float is the rounding of the
respective real, then

∣(s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy) − (sx ∗ vx + sy ∗ vy)∣ ≤ 3.55 × 10−15 .

This theorem can be used to prove that one of the hypothesis
of the ensures clause in lines 11-13 of Listing 1 holds when

4To ease the reading no explicit projection of the values in the union type
are used.

1 / *@
2 double taumodfp (double s̃x , ṽx , s̃y , ṽy) = /let g̃ = s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy ;
3 g̃ < 0 ? (δd ∗̃ δd −̃ s̃x ∗̃ s̃x +̃ s̃y ∗̃ s̃y) /̃ g̃ : −1.0 ;
4
5 predicate stable pathsτm (r e a lvx ,vy ,sx ,sy , double ṽx , ṽy , s̃x , s̃y)=
6 /let g̃ = s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy ; /let g = sx ∗ vx + sy ∗ vy ;
7 (g < 0 ∧ g̃ < 0)∨ (g ≥ 0 ∧ g̃ ≥ 0) ;
8
9 requires : /is finite? (ε)∧ ε ≥ 0 ;

10 ensures : /result ≠ ω⇒ /result = taumodfp(s̃x, ṽx, s̃y, ṽy)
11 ensures : ∀ r e a l vx, vy, sx, sy ;
12 /result ≠ ω ∧ ∣(s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy) − (sx ∗ vx + sy ∗ vy)∣ ≤ ε
13 ⇒ stable pathsτm (vx ,vy ,sx ,sy , ṽx , ṽy , s̃x , s̃y) ;
14 * /
15 double′ taumod fp (double s̃x , ṽx , s̃y , ṽy , ε){
16 i f (s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy < −ε)
17 re turn (δd ∗̃ δd −̃ s̃x ∗̃ s̃x +̃ s̃y ∗̃ s̃y) /̃ (s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy) ;
18 e l s e i f (s̃x ∗̃ ṽx +̃ s̃y ∗̃ ṽy ≥ ε)
19 re turn − 1 . 0 ;
20 e l s e
21 re turn ω ;
22 }

Listing 1. C function and annotations generated by PRECiSA for τmod.
Some syntactic simplifications were applied to the code in this listing to ease
the reading, for instance the use of the infix version of some operators and
avoiding the repetition of the type of the function parameters, among others.

1 / *@
2 r e a l τmod (r e a l sx, vx, sy, vy) = /let g = sx ∗ vx + sy ∗ vy ;
3 g < 0 ? (δd ∗ δd −̃ sx ∗ sx + sy ∗ sy)/g : −1 ;
4
5 ensures : ∀ r e a l vx, vy, sx, sy ;
6 1 ≤ vx ≤ 2 ∧ 1 ≤ vy ≤ 2 ∧ 1 ≤ sx ≤ 2 ∧ 1 ≤ sy ≤ 2 ∧

7 ∣ ṽx −vx∣ ≤
ulp(vx)

2 ∧ ∣ ṽy −vy ∣ ≤
ulp(vy)

2 ∧

8 ∣ s̃x −sx∣ ≤
ulp(sx)

2 ∧ ∣ s̃y −sy ∣ ≤
ulp(sy)

2 ∧

9 /result ≠ ω

10 ⇒ ∣/result − τmod(sx, vx, sy, vy)∣ ≤ 1.08 × 10−14 ;
11 * /
12 double′ taumod num (double s̃x , ṽx , s̃y , ṽy){
13 re turn taumod fp (s̃x , ṽx , s̃y , ṽy , 0x1.0000000000001p − 48) ;
14 }

Listing 2. Concrete C function generated by PRECiSA for τmod assuming
that all the input values lie in the interval [1,2].

velocities and positions are in the specified range and ε is
instantiated with the value from the theorem. Then, under these
assumptions, such ensures guarantees that float and real flows
do not diverge. Furthermore, the accumulated round-off error
in the final result of taumod fp is the maximum between the
accumulated round-off errors in the expressions of each branch
of the if-then-else that does not return a warning (ω). Again,
PRECiSA is used to calculate a bound for such an error for
every one of these expressions under the same assumption
on the input values. In the case of τmod, these bounds are
1.08×10−14 for the first branch and 0 for the second, since −1
is a value that can be exactly representable in floating points.
This kind of deduction can be repeated for each collection
of input ranges provided by the user. PRECiSA summarizes
it in a new annotated C function. This kind of function is
called concrete or numerical in the context of this work and it
only consists of a call to the function in Listing 1 instantiated
with the error estimation computed by PRECiSA; the latter
function, for contraposition, is called generic.

Listing 2 shows the concrete function and its associated
annotations for τmod under the assumptions on the inputs
described above. The formula in line 6 enforces the restriction

1 / *@
2 p r e d i c a t e wcv asc still plus(r e a l b, t, vx, vy, vz, sx, sy, sz) = ⋯ ;
3 p r e d i c a t e wcv asc still plus fp(double b̃, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz) = ⋯ ;
4 ⋯
5 ensures : ∀ r e a l b, t, vx, vy, vz, sx, sy, sz ;
6 /result ≠ ω ∧ /result
7 ⇒ (wcv asc still plus(b, t, vx, vy, vz, sx, sy, sz) ∧

8 wcv asc still plus fp(̃b, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz)) ;
9 * /

10 bool′ WCVint asc still plus (double b̃, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz){⋯}
11
12 / *@
13 p r e d i c a t e wcv asc still mns(r e a l b, t, vx, vy, vz, sx, sy, sz) = ⋯ ;
14 p r e d i c a t e wcv asc still mns fp(double b̃, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz) = ⋯ ;
15 ⋯
16 ensures : ∀ r e a l b, t, vx, vy, vz, sx, sy, sz ;
17 /result ≠ ω ∧ /result
18 ⇒ (wcv asc still mns(b, t, vx, vy, vz, sx, sy, sz) ∧

19 wcv asc still mns fp(̃b, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz)) ;
20 * /
21 bool′ WCVint asc still minus (double b̃, t̃, s̃x, s̃y, s̃z, ṽx, ṽy, ṽz){⋯}

Listing 3. Extract from the program contracts in the generic function
generated by PRECiSA when processing the WCV?↑

⋅ predicate.

on the inputs. Lines 7-8 states the relation between the real
and the corresponding floating-point values, as in the hypoth-
esis in Theorem 2. The program contract finishes assuring
that under the mentioned conditions, the difference between
the result of the C function and the one of its real-valued
specification is at most the estimation computed by PRECiSA
(0x1.0000000000001p − 48 is the hexadecimal representation
of the value 3.55 × 10−15).

While Listings 1 and 2 serve as an useful hint to picture
the implementation and contracts of more complex functions
returning numeric values, the application of the code extraction
process to the predicates present in the sliced DAIDALUS
specification, e.g., WCV?↔↓, WCV?↓

⋅ , etc., deserves a closer
look. For each predicate in the input specification, PRECiSA
generates two pairs of C functions. Each of these pairs, as in
the case of the functions with numeric return values, consists
of a generic and a concrete C function. The difference between
the pairs is that one of them describe the cases in which the
original predicate returns an affirmative answer (true) while the
other is used to characterize the inputs for which a negative
answer (false) would be obtained. For instance, Listing 3
shows a fragment of the program contracts for the C function
WCVint asc still plus, that is extracted from the predicate
WCV?↑

⋅ . The predicate wcv asc still plus , whose actual def-
inition is omitted because of space limitations, is such that
every set of real values for which it holds, make WCV?↑

⋅ hold
as well. Respectively, the predicate wcv asc still plus fp
is such that if a it holds for a set of floating-point in-
puts, the floating-point version of WCV?↑

⋅ holds as well for
those inputs. On the other hand, WCV?↑

⋅ (respectively, its
floating-point version) does not hold for the values for which
wcv asc still mns (resp., wcv asc still mns fp) does it.
Finally, the return type of the C function (bool′) represents the
implementation of the union type between the bool datatype
and the ω value.

Once each slice of the specification was input to PRECiSA
to obtain the corresponding annotated C code, Frama-C was

used to verify that this implementation actually fulfills the con-
tracts stated by the annotations. As sketched in the paragraphs
above, the validity of these contracts is mainly supported by
the error-bound certificates generated by PRECiSA, which
are output in PVS language and, in its turn, they depend
on the definitions and properties declared in the axiomatic
floating-point formalization from NASALib. For that reason,
a particular customization was applied to Frama-C in order to
make it generate the verification conditions resulting from its
analysis in the language of PVS and using the aforementioned
formalization of floating-points.

B. The top-level function

The process described above allowed to generate code for
each slice of the specification and verify its compliance to the
corresponding predicate from Table I. Nevertheless, in order
to generate code with the same applicability than the original
target, i.e., the predicate WCV? from (11), an additional layer
of C code is needed. This layer is responsible for, given a input
indifferent from the conditions defining each slice, selecting
the slice activated by the input and invoking the corresponding
function on it.

Listing 4 shows an excerpt from the generic top-level
function. The postcondition states that if the computation does
not raise a warning and the ε parameters actually denote
bounds for the errors in the conditionals defining the control
flow graph of the whole program, then the result is equivalent
to the original Well-Clear predicate WCV? defined in (11).
The proof of the verification condition generated from this
contract relies on the contracts of the invoked functions,
e.g., WCVint asc still plus and WCVint asc still minus in
the excerpt, and the Slicing Correctness Theorem 1. As in
the lower layers, accompanying concrete C functions were
defined, where the error-bound parameters ε are instantiated
with concrete values computed by PRECiSA, given user-
provided ranges for the rest of the inputs.

The top-level functions and the accompanying annotations
were developed by hand for this case study. Nevertheless,
once the criteria to be used to define the slicing is selected,
the development of these functions and their annotations is
almost mechanic, at least for applications like this one, where
quite simple slicing conditions are used. The automation of
this stage of the technique is one of the possible extensions to
this work.

VI. DISCUSSION

The work presented in this paper is aimed to the extraction
and verification of a floating-point C implementation from
a proven correct real-valued specification of an algorithmic
solution for a safety- and mission-critical problem. When
trying to apply the tool chain presented in [7] several practical
issues were addressed and new improvements were proposed.
This section provides a brief summary of the most significant
of them.

The step that allowed to push PRECiSA beyond its scala-
bility limit was the use of the slicing technique on the original

1 / *@
2 p r e d i c a t e wcv in range (r e a l b, t, vx, vy, vz, sx, sy, sz) =
3 // WCV? ((b, t), (vx, vy, vz), (sx, sy, sz)) from Eq. (11)
4 ⋯
5 r e q u i r e s : /is finite(ε̃0) ∧ ε̃0 ≥ 0 ∧⋯ ∧ /is finite(ε̃3) ∧ ε̃3 ≥ 0 ;
6 ensures : ∀ r e a l b, t, vx, vy, vz, sx, sy, sz ;
7 ∣(δ̃z −̃ ṽz ∗̃ δ̃tcoa) − (δz − vz ∗ δtcoa)∣ ≤ ε̃0 ∧
8 ∣(t̃ −̃ coalt t asc vz fp(s̃z, ṽz)) − (t − coalt t asc vz(sz, vz))∣ ≤ ε̃1 ∧

9 ∣(coalt b asc vz fp(s̃z, ṽz) −̃ b̃) − (coalt b asc vz(sz, vz) − b)∣ ≤ ε̃2 ∧
10 ⋯

11 /result ≠ ω
12 ⇒ (/result⇔ wcv in range(b, t, vx, vy, vz, sx, sy, sz)) ;
13 * /
14 bool′ WCV interval (double b̃ , t̃ , s̃x , s̃y , s̃z , ṽx , ṽy , ṽz , ε̃0 , ε̃1 , ε̃2 , ε̃3 ,⋯){
15 bool′ r e s ;
16 i f (ṽz > 0 . 0) // ascending
17 i f (ṽx == 0 . 0 && ṽy == 0 . 0){ // horizontally still
18 r e s = WCVint asc still plus (b̃ , t̃ , s̃x , s̃y , s̃z , ṽx , ṽy , ṽz , ε̃0 , ε̃1 , ε̃2 , ε̃3) ;
19 i f (r e s == ω | | r e s) re turn r e s ;
20 r e s = WCVint asc still minus (b̃ , t̃ , s̃x , s̃y , s̃z , ṽx , ṽy , ṽz , ε̃0 , ε̃1 , ε̃2 , ε̃3) ;
21 i f (r e s == ω) re turn ω ;
22 i f (r e s) re turn f a l s e ;
23 re turn ω ;
24 } e l s e {
25 ⋯

26 }
27 e l s e {
28 ⋯

29 }
30 }

Listing 4. Excerpt from the generic top-level function.

specification. While the selection of the slicing criteria would
depend on human insight in the general case, once the it is
decided, the automation of most of the tasks related with the
process and integration of the slices into the final analisys is
expected to be feasible, at least in examples with a complexity
similar to the one presented in this paper.

Other of the distinguishing features of this work is the
use of a new floating-point formalization5. This formalization
is different from the one used in previous works in several
aspects. Mainly, it is defined in an axiomatic way, which has a
significant impact in the type checking time of PVS, improving
it by a factor of six. Additionally, this formalization follows
the IEEE-754 standard more closely, including representations
for special values such as Not-a-Numbers (NaN) and infinities.
While the use of a more detailed model usually complicates
in a non-trivial way several aspects of the elements interacting
with it, in this work it was possible to reduce such impact to
a minumum. In fact, the only place where a restriction about
finiteness of the floating-point representations is explicitly
used is for predefined constants and error-bound parameters,
as can be seen in the requires of all the listings above.

The almost seemless integration mentioned above was pos-
sible because the check for finiteness could be encapsulated
in the error-bound certificates generated by PRECiSA. As
part of the automatic proof for certificates as the one ex-
pressed by Theorem 2, the numeric expressions (including
subexpressions) appearing in them are checked to remain
in the floating-point representable range by using a solver
based on branch-and-bound implemented in the logic of PVS
itself [21]. Notably, this process provides hints on overflow

5Available at https://github.com/nasa/pvslib/tree/master/float/axm bnd.

https://github.com/nasa/pvslib/tree/master/float/axm_bnd

detection since if the solver cannot decide whether the numeric
expressions remain in the representable range for the inputs
provided by the user, the proof of the certificate cannot be
completed. in other words, if PVS cannot prove the error
certificate automatically using the PRECiSA proof strategies,
the user is directed to look for an overflow condition on their
program.

VII. RELATED WORK

Different tools have been proposed to reason about the
numerical aspects of C programs. In this work, a combination
of PRECiSA, PVS, and Frama-C [10] is used. Support for
floating-point round-off error analysis in Frama-C is also
provided by the integration with the tool Gappa [22]. However,
the applicability of Gappa is limited to straight-line programs
without conditionals, and it often requires providing additional
ACSL intermediate assertions and hints through annotation
that may be unfeasible to generate automatically. The in-
teractive theorem prover Coq can also be applied to prove
verification conditions on floating-point numbers thanks to the
formalization defined in [23]. Nevertheless, Coq [24] tactics
are not available to automatize the verification process.

Several approaches have been proposed for the verification
of numerical C code by using Frama-C in combination with
Gappa and/or Coq [25]–[30]. In contrast to the present work,
the techniques above are not fully automatic and require
user intervention in both the specification and verification
processes.

In [31], a preliminary version of the technique presented in
this paper is used to verify a specific case study of a point-
in-polygon containment algorithm. In [7], the verification
approach is presented and applied to a small fragment of
DAIDALUS. Neither in [31] nor in [7] the overflow detection
is performed.

Besides Frama-C, other formal methods tools are available
to analyze the numerical properties of C code. Fluctuat [32]
is a static analyzer that, given a C program with annotations
about input bounds and uncertainties on its arguments, pro-
duces an estimation of the round-off error of the program.
Fluctuat detects the presence of possible unstable guards in
the analyzed program, as explained in [33], but does not
instrument the program to emit a warning in these cases. The
static analyzer Astrée [34] detects the presence of run-time
exceptions such as division by zero and under and over-flows
employing sound floating-point abstract domains. In contrast
to the approach presented here, neither Fluctuat nor Astrée
emits proof certificates that an external prover can externally
check.

VIII. CONCLUSION AND FUTURE WORK

In this paper, a formal approach is applied to generate and
verify a floating-point implementation from the DAIDALUS
well-clear specification. This implementation is obtained by
manually simplifying and slicing the original specification and
input each slice to the PRECiSA code generator. PRECiSA
automatically generates a floating-point version of each slice in

C syntax enriched with ACSL contracts stating the relationship
between the ideal real number specification and the floating-
point implementation. In addition, PRECiSA instruments the
code to detect control flow divergences due to rounding errors.
The generated C implementation of each slice is analyzed
within the Frama-C analyzer. In particular, the WP plugin is
used to compute a set of verification conditions that are proved
within the PVS theorem prover. These verification conditions
ensure that the accumulated rounding error is bounded, all
flow divergences are detected, and no overflow occur.

The verification of the DAIDALUS well-clear C imple-
mentation relies on three different tools: the PVS interactive
prover, the Frama-C analyzer, and PRECiSA. All of these
tools are based on rigorous mathematical foundations and have
been used in the verification of industrial and safety-critical
systems. The C floating-point transformed program, the PVS
verification conditions, and the round-off errors bounds are
automatically generated. However, a certain level of expertise
is needed for proving the PVS verification conditions gen-
erated by Frama-C and for proving the equivalence between
the original DAIDALUS specification and the simplified and
sliced one.

In the future, the authors plan to automatize the slicing
process and to simplify the structure of the ACSL pre- and
post-condition generated by PRECiSA to facilitate human
inspection and to produce simpler verification conditions.
Automatic strategies are already available in PRECiSA to
discharge the PVS certificate ensuring the correctness of
the rounding error bounds and to prove certain verification
conditions generated by the WP analysis. However, additional
work needs to be done to fully automatize this process for
larger specifications such as the one targeted in this paper.

REFERENCES

[1] Advisory Circular, U.S. Dept. of Transportation, Federal Aviation Ad-
ministration, AC 90-48D - Pilots’ Role in Collision Avoidance. U.S.
Government, 2016.

[2] U.S. Goverment, Aeronautics and Space. 14 CFR § 91.113, 2004.
[3] C. Muñoz, A. Narkawicz, G. Hagen, J. Upchurch, A. Dutle, and

M. Consiglio, “DAIDALUS: Detect and Avoid Alerting Logic for Un-
manned Systems,” in Proceedings of the 34th Digital Avionics Systems
Conference (DASC 2015), Prague, Czech Republic, September 2015.

[4] RTCA DO-365A, Minimum Operational Performance Standards
(MOPS) for Detect and Avoid (DAA) Systems, Appendix H. RTCA,
February 2020.

[5] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A Prototype
Verification System,” in Automated Deduction - CADE-11, 11th
International Conference on Automated Deduction, ser. LNCS, vol.
607. Springer, 1992, pp. 748–752. [Online]. Available: https:
//doi.org/10.1007/3-540-55602-8 217

[6] A. Narkawicz, C. Muñoz, and A. Dutle, “The MINERVA software
development process,” in Automated Formal Methods, ser. Kalpa
Publications in Computing, vol. 5. EasyChair, 2018, pp. 93–108.
[Online]. Available: https://easychair.org/publications/paper/g1Rs

[7] L. Titolo, M. Moscato, M. Feliú, and C. Muñoz, “Automatic generation
of guard-stable floating-point code,” in Proceedings of the 16th Inter-
national Conference on Integrated Formal Methods (IFM 2020), ser.
LNCS, vol. 12546. Springer, 2020, pp. 141–159.

[8] M. Moscato, L. Titolo, A. Dutle, and C. Muñoz, “Automatic estima-
tion of verified floating-point round-off errors via static analysis,” in
Proceedings of the 36th International Conference on Computer Safety,
Reliablilty, and Security, SAFECOMP 2017. Springer, 2017.

https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://easychair.org/publications/paper/g1Rs

[9] L. Titolo, M. Feliú, M. Moscato, and C. Muñoz, “An abstract inter-
pretation framework for the round-off error analysis of floating-point
programs,” in Proceedings of the 19th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI).
Springer, 2018, pp. 516–537.

[10] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski,
“Frama-C: A software analysis perspective,” Form. Asp. of Comput.,
vol. 27, no. 3, pp. 573–609, 2015.

[11] C. Muñoz and A. Narkawicz, “Formal analysis of extended well-clear
boundaries for unmanned aircraft,” in Proceedings of the 8th NASA FM
Symp. (NFM 2016), ser. LNCS, vol. 9690. Minneapolis, MN: Springer,
June 2016, pp. 221–226.

[12] C. Muñoz, A. Narkawicz, J. Chamberlain, M. Consiglio, and J. Up-
church, “A family of well-clear boundary models for the integration of
UAS in the NAS,” in Proceedings of the 14th AIAA Aviation Technology,
Integration, and Operations (ATIO) Conference, Georgia, Atlanta, USA,
June 2014.

[13] A. P. Smith, C. Muñoz, A. J. Narkawicz, and M. Markevicius, “A
rigorous generic branch and bound solver for nonlinear problems,” in
Proceedings of the 17th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2015, 2015, pp.
71–78.

[14] S. Owre, J. Rushby, and N. Shankar, “PVS: A prototype verification sys-
tem,” in Proceedings of the 11th International Conference on Automated
Deduction (CADE). Springer, 1992, pp. 748–752.

[15] M. D. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, San Diego, California, USA,
March 9-12, 1981. IEEE Computer Society, 1981, pp. 439–449.

[16] ——, “Program slicing,” IEEE Trans. Software Eng., vol. 10, no. 4, pp.
352–357, 1984.

[17] G. Canfora, A. Cimitile, A. D. Lucia, and G. A. D. Lucca, “Software
salvaging based on conditions,” in Proceedings of the International Con-
ference on Software Maintenance, ICSM 1994, Victoria, BC, Canada,
September 1994, H. A. Müller and M. Georges, Eds. IEEE Computer
Society, 1994, pp. 424–433.

[18] J. Q. Ning, A. Engberts, and W. Kozaczynski, “Automated support for
legacy code understanding,” Commun. ACM, vol. 37, no. 5, pp. 50–57,
1994.

[19] J. Silva, “A vocabulary of program slicing-based techniques,” ACM
Comput. Surv., vol. 44, no. 3, pp. 12:1–12:41, 2012.

[20] L. Titolo, C. Muñoz, M. Feliú, and M. Moscato, “Eliminating unstable
tests in floating-point programs,” in Proceedings of the 28th Interna-
tional Symposium on Logic-Based Program Synthesis and Transforma-
tion (LOPSTR 2018). Springer, 2018, pp. 169–183.

[21] A. Narkawicz and C. Muñoz, “A formally verified generic branching al-
gorithm for global optimization,” in Proceedings of the 5th International
Conference on Verified Software: Theories, Tools, and Experiments
(VSTTE 2013), ser. Lecture Notes in Computer Science, E. Cohen and
A. Rybalchenko, Eds., vol. 8164. Menlo Park, CA, US: Springer, May
2014, pp. 326–343.

[22] F. de Dinechin, C. Lauter, and G. Melquiond, “Certifying the floating-
point implementation of an elementary function using Gappa,” IEEE
Trans. on Computers, vol. 60, no. 2, pp. 242–253, 2011.

[23] S. Boldo and G. Melquiond, “Flocq: A unified library for proving
floating-point algorithms in Coq,” in 20th IEEE Symposium on Computer
Arithmetic, ARITH 2011. IEEE Computer Society, 2011, pp. 243–252.

[24] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions, ser.
Texts in Theoretical Computer Science. An EATCS Series. Springer,
2004.

[25] S. Boldo and J. C. Filliâtre, “Formal verification of floating-point
programs,” in Proceedings of ARITH18 2007. IEEE Computer Society,
2007, pp. 187–194.

[26] S. Boldo and C. Marché, “Formal verification of numerical programs:
From C annotated programs to mechanical proofs,” Mathematics in
Computer Science, vol. 5, no. 4, pp. 377–393, 2011.

[27] S. Boldo, F. Clément, J. C. Filliâtre, M. Mayero, G. Melquiond,
and P. Weis, “Wave equation numerical resolution: A comprehensive
mechanized proof of a C program,” Journal of Automated Reasoning,
vol. 50, no. 4, pp. 423–456, 2013.

[28] A. Goodloe, C. Muñoz, F. Kirchner, and L. Correnson, “Verification of
numerical programs: From real numbers to floating point numbers,” in
Proceedings of the NASA FM Symp. NFM 2013, ser. LNCS, vol. 7871.
Springer, 2013, pp. 441–446.

[29] C. Marché, “Verification of the functional behavior of a floating-point
program: An industrial case study,” Science of Computer Programming,
vol. 96, pp. 279–296, 2014.

[30] L. Titolo, M. Moscato, C. Muñoz, A. Dutle, and F. Bobot, “A formally
verified floating-point implementation of the compact position reporting
algorithm,” in Proceedings of the 22nd International Symposium on
Formal Methods (FM 2018), ser. LNCS, vol. 10951. Springer, 2018,
pp. 364–381.

[31] M. Moscato, L. Titolo, M. Feliú, and C. Muñoz, “Provably correct
floating-point implementation of a point-in-polygon algorithm,” in Pro-
ceedings of the 23nd International Symposium on Formal Methods (FM
2019), ser. LNCS, vol. 11800. Springer, 2019, pp. 21–37.

[32] E. Goubault and S. Putot, “Static analysis of numerical algorithms,” in
Proceedings of SAS 2006, ser. LNCS, vol. 4134. Springer, 2006, pp.
18–34.

[33] ——, “Robustness analysis of finite precision implementations,” in
Proceedings of APLAS 2013, ser. LNCS, vol. 8301. Springer, 2013,
pp. 50–57.

[34] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and Rival, “The ASTREÉ Analyzer,” in Proceedings of the 14th Euro-
pean Symposium on Programming (ESOP 2005), ser. LNCS, vol. 3444.
Springer, 2005, pp. 21–30.

	Introduction
	The DAIDALUS library
	Verification approach
	Specification slicing
	Code extraction and verification
	Processing the slices
	The top-level function

	Discussion
	Related work
	Conclusion and future work
	References

