
FM
Artifact
Evaluation

Available

FM
Artifact
Evaluation

FunctionalFunctional

Rigorous Floating-Point Round-Off
Error Analysis in PRECiSA 4.0

Laura Titolo1[0000−0001−7820−7640]�, Mariano Moscato1[0000−0002−6468−9498],
Marco A. Feliu1[0009−0002−6943−9479], Paolo Masci1[0000−0002−0667−7763], and

César A. Muñoz2[0000−0002−8503−5514]

1 Analytical Mechanics Associates Inc.
{laura.titolo, mariano.m.moscato, marco.feliu, paolo.m.masci}@nasa.gov

2 NASA Langley Research Center,
cesar.a.munoz@nasa.gov

Abstract. Small round-off errors in safety-critical systems can lead to
catastrophic consequences. In this context, determining if the result com-
puted by a floating-point program is accurate enough with respect to its
ideal real-number counterpart is essential. This paper presents PRE-
CiSA 4.0, a tool that rigorously estimates the accumulated round-off
error of a floating-point program. PRECiSA 4.0 combines static analy-
sis, optimization techniques, and theorem proving to provide a modular
approach for computing a provably correct round-off error estimation.
PRECiSA 4.0 adds several features to previous versions of the tool that
enhance its applicability and performance. These features include sup-
port for data collections such as lists, records, and tuples; support for
recursion schemas; an updated floating-point formalization that closely
characterizes the IEEE-754 standard; an efficient and modular analysis
of function calls that improves the performances for large programs; and
a new user interface integrated into Visual Studio Code.

1 Introduction

Round-off errors arise from the difference between real numbers and their finite
precision representations. In a floating-point program, round-off errors accumu-
late throughout the computation. This may lead to a large divergence between
the result computed using floating-point arithmetic and the one ideally obtained
using real-number arithmetic. In application domains such as avionics, even small
rounding errors may have catastrophic consequences if they are not carefully ac-
counted for. Examples of these errors have been found, for instance, in geofencing
applications [29] and position encoding algorithms [41]. Several tools have been
proposed over the years to reason about floating-point errors (see [8] for an
overview). However, most of the proposed tools either target straight-line code
and scalar values only, or do not provide sufficient formal guarantees. This limits
their applicability to safety-critical real-world applications.

This paper presents PRECiSA 4.0, an open-source3 tool for automatic floating-
point round-off error analysis. PRECiSA computes a sound and accurate estima-

3 https://github.com/nasa/PRECiSA.

https://github.com/nasa/PRECiSA

2 L. Titolo et al.

tion of the round-off error that may occur in a floating-point program. It supports
a large variety of mathematical operators and programming language constructs,
including conditionals, let-in expressions, and bounded loops. In addition, PRE-
CiSA automatically generates formal certificates that can be externally checked
in the Prototype Verification System (PVS) [33]. These certificates provide for-
mal guarantees on the soundness of the computed round-off error bounds.

An overview of PRECiSA is presented in Section 2. PRECiSA 4.0 adds the
following features with respect to previous versions of the tool [28,39]:

– A novel modular analysis for function calls has been implemented (Sec-
tion 3). The user can choose to apply an abstraction on the computed
round-off error expressions for function calls to speed up the analysis ex-
ecution time. This abstraction has been shown to be effective in the analysis
of large programs with multiple function calls.

– Support for data collections such as lists, records, and tuples has been im-
plemented. In addition, to operate on these collections, native support for
the map and fold recursion schemas has been added (Section 4). This new
feature avoids the task of manually unfolding the program, resulting in a less
error-prone and more efficient analysis of data collections.

– Support for a new floating-point formalization has been added. This formal-
ization faithfully characterizes the IEEE-754 standard [24], including special
values such as NaN, signed zeros, and infinities (Section 5).

– VSCode-PRECiSA, a new user interface integrated into Visual Studio Code,
has been added to the PRECiSA distribution (Section 6). Besides provid-
ing an intuitive way of presenting the analysis results, VSCode-PRECiSA
automatizes and simplifies different kinds of tasks such as comparative, sen-
sitivity, and interval analysis. In addition, VSCode-PRECiSA features a new
graphical visualization of the values that may cause conditional instability.
This phenomenon occurs when floating-point round-off errors impact the
evaluation of Boolean expressions in conditional guards, thus affecting the
control-flow of a program.

In addition to presenting these new features, an experimental evaluation
comparing PRECiSA with other state-of-the-art tools is presented in Section 7
together with a discussion on related work.

2 PRECiSA

The round-off error of the floating-point expression õp(ṽi)ni=1 with respect to
the real-valued expression op(ri)ni=1, where õp is a floating-point operator rep-
resenting a real-valued operator op and ṽi is a floating-point value representing
a real value ri, for 1 ≤ i ≤ n, is given by a combination of (i) the propagation
of the errors carried out by the arguments ṽi, and (ii) the error introduced by
the application of õp versus op. Throughout this paper, floating-point variables,
operands, and expressions are denoted with a tilde on top. The IEEE-754 stan-
dard [24] states that every basic operation should be performed as if it were

PRECiSA 4.0 3

PRECiSAPVS
program

Input
ranges

PVS parser Static
Analysis

PVS proof
assistant

PVS
certificates

Kodiak

Certificate
generator

Verified ✅
Symbolic error
expressions

Round-off errors
estimations

Fig. 1: PRECiSA workflow.

calculated with infinite precision and then rounded to the nearest floating-point
value. Thus, the following inequality is assumed to hold for an n-ary floating-
point operator õp.

∣R(õp(ṽi)ni=1) − op(R(ṽi))ni=1∣ ≤ 1
2
ulp (op(R(ṽi))ni=1) , (2.1)

where R is the projection from floats to reals, and the function ulp (r) (unit in
the last place), for a given real number r, measures the distance between the
two consecutive floating-point numbers f1 and f2 such that f1 < r ≤ f2. The
round-off error of a real-valued expression can be bounded as

∣R(õp(ṽi)ni=1) − op(ri)ni=1∣ ≤ εop(ri, ei)ni=1 + 1
2
ulp (op(R(ṽi))ni=1) , (2.2)

where εop(ri, ei)ni=1 represents an overestimation of the difference between the
application of the real operator on real values and the application of the same
operator on the floating-point arguments, and each ei is a positive real-valued ex-
pression modeling an upper bound of the round-off error carried by the floating-
point arguments ṽi representing the real-valued expression ri, i.e., ∣R(ṽi)−ri∣ ≤ ei.

PRECiSA assumes compliance with the IEEE-754 standard and uses the
round-off error model of Formula (2.2) for correctly rounded operators. Dedi-
cated error approximations are defined for a wide variety of mathematical op-
erators, including arithmetic operators, square root, trigonometric functions,
exponential and logarithmic functions, floor, and ceiling. For each of these oper-
ators, an error expression ϵop(ri, ei)ni=1 is defined as a function of the real-valued
operands and corresponding errors such that

ϵop(ri, ei)ni=1 ≥ εop(ri, ei)ni=1 + 1
2
ulp (op(R(ṽi))ni=1) . (2.3)

PRECiSA accepts as input a floating-point program P , which consists of a set
of function declarations in the language of PVS, and initial ranges for the input
variables, and it computes a correct overestimation of the round-off error that
may occur for each function in P . An overview of the PRECiSA workflow is de-
picted in Fig. 1. PRECiSA first performs a static analysis on the input program
by computing the abstract semantics defined in [39]. For every function declara-
tion f̃(x̃i)ni=1 in the input program, PRECiSA computes a set of conditional error

4 L. Titolo et al.

bounds of the form ⟨η, η̃⟩ ↠ (r, e), where η is a Boolean expression on reals, η̃ is
a Boolean expression on floats, and r, e are real-valued symbolic arithmetic ex-
pressions. Intuitively, ⟨η, η̃⟩ ↠ (r, e) indicates that if the conditions η and η̃ are
satisfied, the result of evaluating f̃(x̃i)ni=1 using exact real-number arithmetic
is r and the round-off error of the floating-point implementation is bounded
by e. The error expression e is built compositionally following the structure of
the function body. The Boolean expressions η and η̃ model the information on
the control flow of the program (i.e., the path conditions from the if-then-else
constructs) and the additional restrictions needed when the operators are not
total. For example, when dealing with the division operation, it is necessary to
guarantee that the divisor is not zero.

The static analysis collects information about real and floating-point exe-
cution paths separately. Thus, it is possible to quantify the error due to the
so-called unstable conditions. This phenomenon occurs when the Boolean guard
of a conditional statement is affected by round-off errors. In this case, the real
and floating-point Boolean evaluation may be different, causing the control-flow
of the floating-point implementation to diverge with respect to its ideal real-
number counterpart. An abstraction technique has been introduced in [39] to
mitigate the state explosion resulting from the sound treatment of conditional
statements. This abstraction collapses the information on the conditional error
bounds by keeping separated stable and unstable cases. This way, the accuracy
of the error analysis is preserved while the size of the state space is reduced.

Example 1. Consider the function t̃coa that computes the time to co-altitude of
two aircraft whose relative altitude is s̃ and relative vertical speed is ṽ.

t̃coa(s̃, ṽ) = if s̃ ∗̃ ṽ < 0 then −(s̃/̃ṽ) else −1, (2.4)

PRECiSA computes a set of four different conditional error bounds:

{⟨s ∗ v < 0 ∧ v ≠ 0, s̃ ∗̃ ṽ < 0 ∧ ṽ ≠ 0⟩ ↠ (−s/v, ϵ/(s, v, es, ev)), (2.5)

⟨s ∗ v ≥ 0, s̃ ∗̃ ṽ ≥ 0⟩ ↠ (−1,0), (2.6)

⟨s ∗ v < 0 ∧ v ≠ 0, s̃ ∗̃ ṽ ≥ 0⟩ ↠ (−s/v, ∣ − s/v − 1∣), (2.7)

⟨s ∗ v ≥ 0 ∧ v ≠ 0, s̃ ∗̃ ṽ < 0 ∧ ṽ ≠ 0⟩ ↠ (−1, ∣s/v − 1 + ϵ/(s, v, es, ev)∣)}. (2.8)

The real-valued variables s and v represent the real values of s̃ and ṽ, respectively,
while es and ev are two positive real variables representing the round-off error of
s̃ and ṽ, respectively. Formula (2.5) and Formula (2.6) correspond to the cases
where real and floating-point computational flows coincide. In Formula (2.5), the
negation operator does not contribute to the rounding error, and the following
symbolic round-off error expression is computed for the division:

ϵ/(s, v, es, ev) =
∣v∣es + ∣s∣ev
v2 − ∣v∣ev

+ 1
2
ulp (∣s∣ + es∣v∣ − ev

) . (2.9)

In Formula (2.6), the error is 0 since the output is an integer constant. For-
mula (2.7) and Formula (2.8) model the unstable paths. In these cases, the error

PRECiSA 4.0 5

is the difference between the output of the two branches taking into account the
round-off error of the floating-point result.

The described static analysis is purely compositional, i.e., no assumption is
made on the values of the input variables, and the error expressions are com-
posed in a modular fashion. Given initial ranges for the input variables, PRE-
CiSA uses Kodiak4, a rigorous global optimizer, to compute a sound enclosure of
the maximum of the symbolic error expression e. Kodiak implements a formally
verified branch-and-bound algorithm presented in [32]. This branch-and-bound
algorithm relies on enclosure functions for mathematical operators. These en-
closure functions compute provably correct over- and under- approximations
of the symbolic error expressions using either interval arithmetic or Bernstein
polynomial basis. The algorithm recursively splits the domain of the function
into smaller subdomains and computes an enclosure of the original expression in
these subdomains. The recursion stops when a precise enclosure is found, based
on a given precision, or when a given maximum recursion depth is reached. Both
precision and maximum recursion depth can be specified as parameters in PRE-
CiSA. Increasing the value of these parameters will likely improve the accuracy
of the analysis but may also increase the execution time. The output of Kodiak
is a numerical enclosure for each symbolic error expression. When a function f̃
is associated with more than one conditional error bound, e.g., in the case of
conditionals, the overall round-off error of f̃ is defined as the maximum of all
the error expressions.

To provide formal guarantees on the analysis results, PRECiSA generates
proof certificates ensuring that the round-off error estimations are correct. PRE-
CiSA relies on the higher-order logic interactive theorem prover PVS and a
floating-point round-off error formalization included in the NASA PVS Library.5

More details on this formalization will be given in Section 5. For each function,
the information in the conditional error bounds is encoded as a PVS lemma stat-
ing that, provided the conditions are satisfied and the input variables are in the
given numerical ranges, the difference between the floating-point implementa-
tion and the real-number specification is at most the computed error estimation.
Automatic strategies have been implemented to check the symbolic error expres-
sion correctness and the enclosure computed by Kodiak by executing the formally
verified PVS implementation of the branch-and-bound algorithm of [32].

3 Optimized Modular Function Call Analysis

PRECiSA supports the compositional analysis of non-recursive function calls.
The analysis works by computing a set of conditional error bounds for each
function declaration and building an interpretation I mapping each function to
its semantics. When the analysis encounters a function call f̃(x̃i)ni=1, it performs
a look-up in the interpretation I. For each conditional error bound associated

4 https://github.com/nasa/Kodiak.
5 https://github.com/nasa/pvslib.

https://github.com/nasa/Kodiak
https://github.com/nasa/pvslib

6 L. Titolo et al.

to the function ⟨ϕ, ϕ̃⟩t ↠ (r, e) ∈ I(f̃(x̃i)ni=1), PRECiSA performs a substitu-
tion of the formal parameters with the actual ones, computing all the possible
combinations. For each actual parameter and each conditional error bound in
its semantics, ⟨ϕi, ϕ̃i⟩ti ↠ (ri, ei), the following conditional error bound is com-
puted for the function call

⟨ϕ′ ∧
n

⋀
i=1

ϕi, ϕ̃′ ∧
n

⋀
i=1

ϕ̃i⟩ ↠ (r′, e′),

where r′ = r[x̃i/ri]ni=1, e′ = e[ϵx̃i/ei]ni=1,ϕ′ = ϕ[x̃i/ri, ϵx̃i/ei]ni=1, and ϕ̃′ = ϕ̃[x̃i/ri,
ϵx̃i/ei]ni=1. More details on the semantics can be found in [39].

This approach guarantees correctness and accuracy for the optimization pro-
cess since the error expressions of each function call and of its arguments are
unfolded in the global error expression. However, such an error expression may
become extremely large for programs with multiple and nested function calls.

To overcome this problem, PRECiSA 4.0 implements an alternative abstract
semantics for function calls. In this approach, during the symbolic analysis pro-
cess, when a function call f̃(x̃i)ni=1 is encountered, instead of computing all
the combinations and unfolding the semantics of the function, a placeholder
is placed in the call site. Then, during the optimization phase of the analysis,
this placeholder is replaced with the worst-case round-off error for the function
f̃ , computed by Kodiak by optimizing the error expression associated to f̃ and
obtained from the interpretation I. It is crucial that the global optimization is
executed at each calling site with the correct input ranges for the function ar-
guments with respect to the initial range inputs, provided by the user, and the
accumulated round-off error of the arguments. To enable this, PRECiSA relies
again on the global optimizer Kodiak. For each argument ãrg , Kodiak computes
its range [l, u] by optimizing the real-valued counterpart of the argument ex-
pression. To improve efficiency without compromising too much precision, plain
interval arithmetic with no branching—setting the maximum depth parameter
to 1 in Kodiak—is used in this phase. The symbolic round-off error expression
associated to ãrg is computed by PRECiSA. The error due to unstable branches
is also taken into account in this phase. This error expression is maximized by
Kodiak, and the result err is used to enlarge the argument ranges, obtaining
[l − err , u + err]. This range is the one used to maximize the function’s er-
ror expression for that specific call site. The symbolic error expression for each
function is computed just once when the interpretation I is built and then its
numerical value is computed by maximizing it with different input ranges. The
proposed abstract semantics may lead to a loss of correlation between the vari-
ables and, potentially, to less accurate estimations. Depending on the desired
accuracy/efficiency threshold, the user can choose to perform this abstract func-
tion call analysis (the default behavior in PRECiSA 4.0) or to use the option
that unfolds the semantics of the function calls and arguments.

The optimization of function calls was key for performing a formal analysis of
the NASA DAIDALUS library [30]. This library provides a reference implemen-
tation of detect-and-avoid capabilities for unmanned aircraft systems intended

PRECiSA 4.0 7

to keep aircraft safely separated. In [5], the application of a toolchain to extract
a formally verified floating-point C implementation of a DAIDALUS module is
presented. The extracted code is annotated with program contracts modeling
how the round-off error accumulates through the computation and is instru-
mented to detect conditional instability. PRECiSA is used in this toolchain as a
library to compute round-off errors following the approach presented in [42]. To
successfully apply the previous version of PRECiSA to the DAIDALUS mod-
ule, a pre-processing of the input specification was needed. Without this pre-
processing, which included a program slicing and several semantics-preserving
simplifications, PRECiSA did not terminate after several minutes. This was due
to the complexity of the module which features several conditionals, predicates,
and function calls. Using the analysis optimization described in this section, the
new version of PRECiSA is able to analyze the original DAIDALUS module
without the slicing and simplification used in [5]. Fig. 2 and Table 1 show the
comparison between the original and the abstract analysis for the numerical
functions in the DAIDALUS module. In this case study, the function abstrac-
tion improves the performance of the analysis without sacrificing the accuracy. In
some cases, slightly more accurate estimations are obtained. This may be due to
the large size of the unfolded error expressions, for which the branch-and-bound
may not be able to reach enough accuracy within the specified maximum depth.
For instance, for vertical WCV (see [30]), the unfolding process times out after
5 minutes.

0
2
4
6
8

10
12

De
lta

Th
eta

_D
_p
os

Th
eta

_D
_n
eg

Th
eta

_H
_p
os

Th
eta

_H
_n
eg

co
alt
_e
ntr
y

co
alt
_e
xit

unfolding abstraction

Fig. 2: Times in seconds for the analysis of
the DAIDALUS module.

unfolding abstraction

Delta 4.69-14 4.68E-14

Theta D pos 1.29E-07 1.07E-07

Theta D neg 1.29E-07 1.07E-07

Theta H pos 3.55E-15 3.55E-15

Theta H neg 3.55E-15 3.55E-15

coalt entry 8.88E-15 6.66E-15

coalt exit 3.77E-15 3.77E-15

vertical WCV time-out 1.77E-15

Table 1: Experimental results
on the round-off error of the
DAIDALUS module.

4 Data Collections and Bounded Recursion Support

Previous versions of PRECiSA, as well as the majority of floating-point error
analysis tools, focus on scalar values. However, it is often the case that safety-
critical numerical code makes use of data structures such as lists, tuples, and
records. For instance, in the NASA-developed libraries DAIDALUS [30] (aircraft
detect-and-avoid) and PolyCARP [31] (polygon computations), a point in space

8 L. Titolo et al.

is represented as a tuple (x, y); polygons, used to represent keep-in and keep-out
areas such as geofences and weather cells, are represented as lists of points; and
aircraft position and velocity vectors are represented as records. These libraries
also use bounded loops and typical functional language recursion structures such
as map and fold. To enhance the applicability of PRECiSA to these libraries
of interest to NASA, support for data collections and the bounded recursion
schemas map and fold have been added to PRECiSA.

Data collections are admitted both as arguments and as return types of
functions. Records and tuples are treated in a similar way in PRECiSA. The
variable environment used by PRECiSA to store the semantics of local and input
variables has been enhanced to accommodate record fields and tuple indices.
When a function returns a record or a tuple, PRECiSA performs the static
analysis for each element, thus the result is a record or tuple of round-off errors.
Furthermore, the structure of the function interpretation I has been modified to
support fields and indices. When a function of type record or tuple is called by
another function and a field or index is accessed, a lookup in the interpretation
is performed as expected.

In contrast to records and tuples, the round-off error of a list is defined as the
maximum of the errors of its elements assuming that they are in the same given
input range. PRECiSA 4.0 adds support for the following recursion schemas that
operate on lists.

map f̃ [l1, . . . , ln] = [f̃(l1), . . . , f̃(ln)], (4.1)

fold f̃ a [l1, . . . , ln] = f̃(l1, . . . (f̃(ln−1, f̃(ln, a))) . . .). (4.2)

Instead of unrolling the definitions and computing a large error expression, it is
sufficient to retrieve the error expression associated to function f̃ in the interpre-
tation, and apply the global optimization process with the correct input variable
ranges. For the map schema this process is straightforward since all elements in a
list are assumed to be in the same input range provided by the user. For the fold
schema, similar to the function call analysis presented in Section 3, it is possible
to compute an overestimation of the input ranges in Kodiak. In this phase, n
branch-and-bound evaluations of f̃ are performed, where n is the length of the
list. The symbolic error expression for f̃ is computed once and then maximized
for different values.

5 Floating-point Formalization

In addition to computing error bounds, an important feature of PRECiSA is
the generation of PVS proof certificates that formally ensure that these bounds
are correct. PRECiSA relies on the higher-order logic interactive theorem prover
PVS [33] and a floating-point formalization originally presented in [6] and ex-
tended in [28]. This formalization includes basic definitions related to floating-
point numbers, such as their representation, the notion of ulp, the notion of
subnormal float, and the definition of correctly rounded operators. In addition,

PRECiSA 4.0 9

Fig. 3: Symbolic error lemma in PVS for the t̃coa function.

Fig. 4: Numeric error lemma in PVS for the t̃coa function.

it includes a collection of formally verified round-off error estimations for a wide
range of mathematical operators. Since PRECiSA’s previous release, the PVS
floating-point formalization has been restructured and updated to model closely
the IEEE-754 standard. To accommodate this change, the certificate generation
and the automated proof strategies have been updated in PRECiSA 4.0.

The previous version of PRECiSA assumed that floating-point values were
unbounded, meaning that they could be outside the ranges defined by the IEEE-
754 standard. Furthermore, special values such as signed zeros, infinities, and
NaN were not represented. The new version explicitly introduces bounds for
different architectures and special values as defined in the standard. Thus, all
floating-point values are required to be either special values or within a valid
range.

As an example, Fig. 3 depicts one of the lemmas generated for the function
t̃coa from Example 1. Line 2 quantifies over the floating-point variables, s and v,
their real number counterparts, r s and r v, and the non-negative error variables
e s and e v. Line 3 states that all the expressions are finitely representable,
thus no overflow or NaN can occur. Line 4 states that e s (resp., e v) over-
approximates the difference between r s and s (resp., r v and v). Lines 5-6
specify the Boolean conditions that model the stable conditional error bounds
in Formula (2.5) and Formula (2.6). The consequent of the lemma states that
the round-off error of t̃coa is at most the maximum between the error of the
division −(s̃/̃ṽ) and 0, which is the representation error of the value −1. Fig. 4
shows a concrete numerical instantiation of the lemma in Fig. 3, which is also
automatically generated by PRECiSA. The input ranges are declared in Line 6.
The error computed by Kodiak is shown in Line 8 and roughly corresponds to
3.23E−13. The generated valid range conditions can be used as implicit overflow
detectors. In fact, if the value of an expression cannot be proven to be in the

10 L. Titolo et al.

Fig. 5: Round-off error analysis in VSCode-PRECiSA.

range, the lemma cannot be proven. This indicates that an overflow may have
occurred.

6 VSCode-PRECiSA User Interface

VSCode-PRECiSA6 implements a graphical user interface that integrates PRE-
CiSA into Visual Studio Code, a widely used software development environment
developed by Microsoft. Analysis results from PRECiSA are presented using
both a bar chart plot diagram (see Fig. 5) and a numerical table. The table
presents the numerical results of the analysis along with information on the
instability error measuring the divergence of the conditional branches, if appli-
cable, and specific details about the parameters used for the analysis. A series
of analysis experiments can be performed for different ranges of input values
and combinations of analysis parameters. VSCode-PRECiSA also provides spe-
cialized views that facilitate and automate different tasks typically performed
with PRECiSA: interval analysis, sensitivity analysis, comparative analysis, and
conditional instability analysis.

The interval analysis view divides a range of input values into n equally-
sized sub-ranges, where n is a positive natural number provided by the user.
Floating-point round-off error estimations are computed for each sub-range. The
results obtained in this view can be used to gain insights on how to reimplement
functions to minimize their round-off errors.

The sensitivity analysis view evaluates the floating-point round-off error of
a function when the range of input values is affected by a given uncertainty
coefficient provided by the user. This view automates the task of checking the
robustness of a program to round-off errors, i.e., whether small variations of a
program’s input values lead to unexpectedly large variations in the output.

The comparative analysis view shows the floating-point round-off error of two
functions evaluated on the same input variables. This view facilitates the assess-
ment of the round-off error in two alternative implementations of an algorithm.

6 https://github.com/nasa/PRECiSA/tree/master/vscode-precisa.

https://github.com/nasa/PRECiSA/tree/master/vscode-precisa

PRECiSA 4.0 11

Fig. 6: Conditional instability analysis in VSCode-PRECiSA.

The toolkit automatically feeds the two functions with the same input ranges
and the analysis results are displayed side-by-side in a bar chart.

As mentioned in Section 2, PRECiSA estimates the error associated with
unstable conditionals and computes the conditions under which the ideal real
number path diverges from the floating-point one. These conditions, called in-
stability conditions, are represented by sets of Boolean expressions over both
real and floating-point numbers. The conditional instability analysis in VSCode-
PRECiSA presents visual information on these instability conditions, highlight-
ing which combinations of input variables may alter the control flow of a floating-
point program with respect to its ideal real number counterpart. A 2D-mesh plot
is created for a selected pair of variables where the red areas correspond to the
regions of possible instability. These regions of instability are computed by the
branch-and-bound paving functionality of Kodiak. The paver partitions the in-
put space into regions (called boxes) and uses interval arithmetic to compute
the value of the instability conditions over each input region. Due to the over-
approximation introduced by interval arithmetic, Kodiak classifies every box as
“certainly satisfy,” “possibly satisfy,” and “certainly do not satisfy.” The “possi-
bly satisfy” boxes are progressively refined until a maximum refinement depth or
a minimum precision (box size) is reached. The set of boxes that “certainly” and
“possibly” satisfy the instability conditions form a sound over-approximation of
the inputs that may cause unstable behaviors and, as a consequence, may lead
to large computation errors. To the best of the authors’ knowledge, PRECiSA
is the only tool that supports this kind of analysis. Fig. 6 shows the results of
the instability analysis for the following function that checks if a point is inside
an ellipse-shaped area.

̃pointInEllipse(x̃, ỹ) = if x̃ ∗̃ x̃/̃4 +̃ ỹ ∗̃ ỹ/̃9 ≤ 10 then 1 else − 1. (6.1)

The figure illustrates that unstable tests may occur for values close to the border
of the ellipse, though regions of instability are not always as obvious (see [29]
for an example).

12 L. Titolo et al.

7 Related Work

Diverse analysis techniques and tools that estimate the round-off error of floating-
point computations have been proposed in the literature.

Gappa [16] computes enclosures for floating-point expressions via interval
arithmetic that can be checked in the Coq proof assistant. This method enables
a quick computation, but may result in pessimistic error estimations. In Gappa,
the bound computation, the certification construction, and their verification may
require hints from the user. Thus, some level of expertise is required, unlike
PRECiSA, which is fully automatic.

Fluctuat [19] is a commercial analyzer that accepts as input a C program
with annotations about input bounds and uncertainties, and it produces bounds
for the round-off error of the program expressions. Fluctuat uses a zonotopic
abstract domain [21] that extends affine arithmetic [17]. It can soundly identify
whether unstable conditional may occur [22] and it provides support for iterative
programs by using the widening operators introduced in [18,20]. Unlike PRE-
CiSA, Fluctuat does not produce formal certificates. PRECiSA also implements
a widening operator [39], which takes advantage of the information contained
in the path conditions of the conditional error bounds to determine when the
round-off error of a program may converge. This widening has been applied to
simple programs where the error is known to stabilize in a few iterations. More
work is needed in this direction to define an effective widening operator for
estimating round-off errors for recursive programs.

FPTaylor [37] uses symbolic Taylor expansions to approximate floating-point
straight-line expressions and, similar to PRECiSA, applies a global optimization
technique to obtain numerical enclosures for round-off errors. It provides support
for different rounding modalities such as to-the-nearest, toward infinity, and
toward zero. Previous versions of FPTaylor emitted certificates for HOL Light
[23], however this functionality appears as deprecated in the last release.

Satire [15] is a tool for estimating round-off errors for straight-line floating-
point code with a focus on efficiency. It combines a variant of the technique
presented in [37] with an abstraction heuristic that replaces parts of the sym-
bolic error expression with pre-computed constants. Similar to the abstraction
presented in Section 3, this approach can lead to a loss of correlation between
variables and possibly less accurate results, however, it improves the performance
of the tool, and it provides a good compromise to scale up to expressions with
thousands of operators. In contrast to [37], Satire only computes the first term
of the Taylor error expansion. Thus, the computed error bound may not be a
sound overestimation. In [1], a sound variation of the abstraction presented in
[15], which takes into account also the second-order Taylor term, is presented.

VCFloat [35,3] is a tool that computes rigorous round-off error terms for
straight-line Coq expressions. VCFloat does not generate a Coq certificate, in-
stead the computation of the bound is done entirely within Coq. The input
program contains a proof template that needs to be instantiated by the user in
order to prove the correctness of the computed bounds.

PRECiSA 4.0 13

PRECiSA FPTaylor Daisy VCFloat Fluctuat Gappa

proof certificates ✓ ✓ ✗ ✓ ✗ ✓

conditionals ✓ ✗ ✗ ✗ ✓ ✗

instability detection ✓ ✗ ✗ ✗ ✓ ✗

instability analysis ✓ ✗ ✗ ✗ ✗ ✗

function calls ✓ ✗ ✗ ✗ ✓ ✗

bounded loops ✓ ✗ ✗ ✗ ✓ ✗

widening ✓ ✗ ✗ ✗ ✓ ✗

data collections ✓ ✗ ✓ ✗ ✓ ✗

rounding modes ✗ ✓ ✗ ✗ ✗ ✗

fixed-point arith. ✗ ✗ ✓ ✗ ✗ ✓

Table 2: Comparison of the features of worse-case round-off error analysis tools.

Daisy [13] is a framework for the analysis and optimization of finite-precision
computations. It supports both floating-point and fixed-point arithmetic, and
it computes estimations for both absolute and relative errors. Daisy does not
generate proof certificates, but the external checker FloVer [4] can be used to
validate the bounds computed by Daisy. In [25], Daisy has been enhanced with
support for arrays and matrices.

Unlike PRECiSA, which targets programs with common constructs such as
let-in constructs, conditional, and function calls, FPTaylor, VCFloat, and Daisy
are designed to analyze straight-line program expressions. Table 2 summarizes
the features of the above-mentioned tools.

Below, PRECiSA 4.0 is compared in terms of accuracy and performance
with the following currently maintained open-source tools: Daisy [13] (commit
b1705d9), FPTaylor [37] (ver. 0.9.4+dev), and VCFloat2 [3] (commit 10caf1c).
This comparison was performed using the standard benchmark suite FPBench [12].
The selected benchmarks involve nonlinear expressions, transcendental func-
tions, and polynomial approximations of functions, taken from equations used
in physics, control theory, and biological modeling. These benchmarks and the
generated PVS certificates can be found in the PRECiSA distribution. The ex-
perimental environment consisted of a 2.6 GHz 6-Core Intel Core i7 with 16 GB
of RAM running under MacOS Ventura 13.6.6.

Fig. 7 shows numerical round-off error bounds computed by the aforemen-
tioned tools. The default configuration is used for each tool. For PRECiSA,
Daisy, and FPTaylor, input variables and constants are assumed to be real num-
bers. This means that they carry an initial round-off error that has to be taken
into consideration in the analysis. VCFloat2 does not support the modeling of
the initial rounding, thus the input values are assumed to be perfectly repre-
sentable as a floating-point. This means that the initial rounding error is not
taken into account and it is not propagated. Daisy and FPTaylor use the same
round-off error model. However, Daisy relies on data-flow analysis and SMT
solvers to compute error bounds, while FPTaylor and PRECiSA use global opti-

14 L. Titolo et al.

1.00E-16

1.00E-14

1.00E-12

1.00E-10

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

1.00E+04
pre

da
tor
Pre

y

ver
hu
lst

sq
roo

t

sin
e

sin
eO
rde

r3

tur
bin

e3

tur
bin

e1

tur
bin

e2

t-d
iv-
t1

ke
ple

r0

do
pp
ler
3

do
pp
ler
1

rig
idB

od
y1

do
pp
ler
2

ke
ple

r1

him
mi
lbe

au

ke
ple

r2

jet rig
idB

od
y2

ca
rbo

nG
as

log
Ex
p
sp
he
re

ha
rtm

an
3

azi
mu

th

ha
rtm

an
6

PRECiSA FPTaylor Daisy VCFloat2

Fig. 7: Experimental results for absolute round-off error bounds.

0.01

0.1

1

10

100

1000

10000
ver

hu
lst

sin
eO
rde

r3

t-d
iv-
t1

sq
roo

t

do
pp
ler
2

do
pp
ler
3

ca
rbo

nG
as

rig
idB

od
y1

pre
da
tor
Pre

y

him
mi
lbe

au

tur
bin

e3

tur
bin

e2

tur
bin

e1

ke
ple

r0

rig
idB

od
y2

do
pp
ler
1

sin
e

ke
ple

r1

jet ke
ple

r2

sp
he
re

azi
mu

th

ha
rtm

an
3

log
Ex
p
ha
rtm

an
6

PRECiSA FPTaylor Daisy VCFloat

Fig. 8: Times in seconds for the generation of round-off error bounds.

mization methods. The methods used by FPTaylor and PRECiSA are different,
but they coincide on certain operations like sum and multiplication. VCFloat
uses interval arithmetic with subdivisions, which may be less accurate than the
methods used by FPTaylor and PRECiSA. The times for the computation of
the bounds are shown in Fig. 8. The performance of PRECiSA is in line with
the other similar tools for most of the examples, and for some of the considered
benchmarks PRECiSA is the fastest approach. PRECiSA’s times also include
the generation of the PVS certificates, while Daisy’s include the computation of
the relative error bound. In summary, for the considered examples, PRECiSA
provides a good trade-off between accuracy and performance together with a
wide support for arithmetic operations and programming constructs.

Besides worst-case round-off error analysis tools, other tools have been pro-
posed to improve the quality of floating-point software. The static analyzer
Astrée [10] automatically detects the presence of potential floating-point run-

PRECiSA 4.0 15

time exceptions such as overflows and division-by-zero by means of sound floating-
point abstract domains [27,7]. Precision allocation (or tuning) tools [9,36,14,2]
select the lowest floating-point precision for the program variables that is enough
to achieve the desired accuracy. Program optimization tools [34,43,11,38] improve
the accuracy of floating-point programs by rewriting arithmetic expressions in
equivalent ones with a lower round-off error. ReFlow [40], initially distributed
as part of PRECiSA, automatically extracts floating-point C code from a PVS
real number specification. ReFlow implements a code instrumentation that de-
tects unstable conditionals and annotates the code with contracts that relate
the floating-point implementation with the real-valued program specification.
The annotated code can be used as input to the static analyzer Frama-C [26].
ReFlow relies on PRECiSA to compute the round-off error estimations and the
corresponding PVS proof certificates that guarantee their correctness.

8 Conclusion

This paper presents PRECiSA 4.0, the latest release of a NASA open-source
static analyzer for floating-point round-off errors. This version of the tool adds
several new features and provides support for a wide range of program constructs
and mathematical operators. While the majority of other state-of-the-art round-
off error analysis tools are limited to straight-line program expressions, PRE-
CiSA targets programs with function calls, predicates, conditionals, and data
structures. Conditional instability analysis is particularly challenging to detect
and correct by visual code inspection. Issues related to unstable guards have
been discovered in NASA libraries implementing geofencing applications [29]
and aircraft detect-and-avoid logics [40]. To the best of the authors’ knowledge,
the conditional instability analysis presented in this work is the first approach
that specifically targets the problem of identifying the source of instability in
floating-point programs. PRECiSA 4.0 has been used in several applications at
NASA, demonstrating its effectiveness and applicability in real-world problems.
PRECiSA is at the core of the floating-point C code generator ReFlow , which
has been used to generate formally verified floating-point C code for the NASA
libraries DAIDALUS [5] and PolyCARP [29].

In the future, the authors plan to add more features to expand even more
the applicability of PRECiSA to real-world programs. For instance, support for
fixed-point numbers will be added to enable the analysis of quantized neural net-
works. The symbolic Taylor error expansion introduced in [37] can be integrated
into the analysis performed by PRECiSA. These error approximations can be
used as an alternative to, or in combination with, the error expressions imple-
mented in PRECiSA. Additionally, the authors plan to enhance the Kodiak tool
to support conditional expressions. This feature will improve the accuracy of the
round-off error of conditional if-then-else expressions.

Availability. PRECiSA 4.0 is released under NASA Open Source Agreement
and it is available at https://github.com/nasa/PRECiSA. Additionally, the

https://github.com/nasa/PRECiSA

16 L. Titolo et al.

companion artifact of this submission can be accessed via the following link:
https://doi.org/10.5281/zenodo.12525527.

References

1. Abbasi, R., Darulova, E.: Modular optimization-based roundoff error analysis of
floating-point programs. In: 30th International Symposium on Static Analysis, SAS
2023. Lecture Notes in Computer Science, vol. 14284, pp. 41–64. Springer (2023).
https://doi.org/10.1007/978-3-031-44245-2 4

2. Adjé, A., Ben Khalifa, D., Martel, M.: Fast and efficient bit-level precision tuning.
In: Proceedings of the 28th International Symposium on Static Analysis, SAS
2021. Lecture Notes in Computer Science, vol. 12913, pp. 1–24. Springer (2021).
https://doi.org/10.1007/978-3-030-88806-0 1

3. Appel, A.W., Kellison, A.: Vcfloat2: Floating-point error analysis in coq.
In: Proceedings of the 13th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2024. pp. 14–29. ACM (2024).
https://doi.org/10.1145/3636501.3636953

4. Becker, H., Zyuzin, N., Monat, R., Darulova, E., Myreen, M.O., Fox, A.C.J.: A
verified certificate checker for finite-precision error bounds in coq and HOL4. In:
2018 Formal Methods in Computer Aided Design, FMCAD 2018. pp. 1–10. IEEE
(2018). https://doi.org/10.23919/FMCAD.2018.8603019

5. Bernardes Fernandes Ferreira, N., Moscato, M.M., Titolo, L., Ayala-Rincón, M.: A
provably correct floating-point implementation of well clear avionics concepts. In:
Formal Methods in Computer-Aided Design (FMCAD 2023). pp. 237–246. IEEE
(2023). https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0 32

6. Boldo, S., Muñoz, C.: A high-level formalization of floating-point numbers in PVS.
Tech. Rep. CR-2006-214298, NASA (2006)

7. Chen, L., Miné, A., Cousot, P.: A sound floating-point polyhedra abstract domain.
In: Proceedings of the 6th Asian Symposium on Programming Languages and
Systems, APLAS 2008. Lecture Notes in Computer Science, vol. 5356, pp. 3–18.
Springer (2008). https://doi.org/10.1007/978-3-540-89330-1 2

8. Cherubin, S., Agosta, G.: Tools for reduced precision computation: A survey. ACM
Computing Surveys 53(2), 33:1–33:35 (2020). https://doi.org/10.1145/3381039

9. Chiang, W., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Raka-
marić, Z.: Rigorous floating-point mixed-precision tuning. In: Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017. pp. 300–315. ACM (2017). https://doi.org/10.1145/3009837.3009846

10. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival:
The ASTREÉ Analyzer. In: Proceedings of the 14th European Symposium on
Programming (ESOP 2005). Lecture Notes in Computer Science, vol. 3444, pp.
21–30. Springer (2005). https://doi.org/10.1007/978-3-540-31987-0 3

11. Damouche, N., Martel, M.: Salsa: An Automatic Tool to Improve the Numerical
Accuracy of Programs. 6th Workshop on Automated Formal Methods, AFM 2017
5, 63–76 (2017). https://doi.org/10.29007/j2fd

12. Damouche, N., Martel, M., Panchekha, P., Qiu, C., Sanchez-Stern, A., Tatlock,
Z.: Toward a standard benchmark format and suite for floating-point analysis. In:
9th International Workshop Numerical Software Verification, NSV 2016, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 10152, pp. 63–77 (2016).
https://doi.org/10.1007/978-3-319-54292-8 6

https://doi.org/10.5281/zenodo.12525527
https://doi.org/10.1007/978-3-031-44245-2_4
https://doi.org/10.1007/978-3-030-88806-0_1
https://doi.org/10.1145/3636501.3636953
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.34727/2023/ISBN.978-3-85448-060-0_32
https://doi.org/10.1007/978-3-540-89330-1_2
https://doi.org/10.1145/3381039
https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.29007/j2fd
https://doi.org/10.1007/978-3-319-54292-8_6

PRECiSA 4.0 17

13. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy -
Framework for Analysis and Optimization of Numerical Programs (Tool Paper). In:
24th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2018. Lecture Notes in Computer Science, vol. 10805,
pp. 270–287. Springer (2018). https://doi.org/10.1007/978-3-319-89960-2 15

14. Darulova, E., Kuncak, V.: Sound compilation of reals. In: Proceed-
ings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL). pp. 235–248. ACM (2014).
https://doi.org/10.1145/2535838.2535874

15. Das, A., Briggs, I., Gopalakrishnan, G., Krishnamoorthy, S.: An abstraction-
guided approach to scalable and rigorous floating-point error analysis. CoRR
abs/2004.11960 (2020), https://arxiv.org/abs/2004.11960

16. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point implemen-
tation of an elementary function using Gappa. IEEE Trans. on Computers 60(2),
242–253 (2011). https://doi.org/10.1109/TC.2010.128

17. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: Concepts and
applications. Numerical Algorithms 37(1-4), 147–158 (2004).
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6

18. Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zonotope
intersection. In: Proceedings of the 22nd International Conference on Computer
Aided Verification, CAV 2010. Lecture Notes in Computer Science, vol. 6174, pp.
212–226. Springer (2010). https://doi.org/10.1007/978-3-642-14295-6 22

19. Goubault, E., Putot, S.: Static analysis of numerical algorithms. In: Proceed-
ings of the 13th International Symposium on Static Analysis (SAS 2006).
Lecture Notes in Computer Science, vol. 4134, pp. 18–34. Springer (2006).
https://doi.org/10.1007/11823230 3

20. Goubault, E., Putot, S.: Perturbed affine arithmetic for invariant computation in
numerical program analysis. CoRR abs/0807.2961 (2008)

21. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Pro-
ceedings of VMCAI 2011. Lecture Notes in Computer Science, vol. 6538, pp. 232–
247. Springer (2011). https://doi.org/10.1007/978-3-642-18275-4 17

22. Goubault, E., Putot, S.: Robustness analysis of finite precision implementations.
In: Proceedings of APLAS 2013. Lecture Notes in Computer Science, vol. 8301,
pp. 50–57. Springer (2013). https://doi.org/10.1007/978-3-319-03542-0 4

23. Harrison, J.: HOL light: An overview. In: Proceedings of TPHOLs 2009.
Lecture Notes in Computer Science, vol. 5674, pp. 60–66. Springer (2009).
https://doi.org/10.1007/978-3-642-03359-9 4

24. IEEE: IEEE standard for binary floating-point arithmetic. Tech. rep., Institute of
Electrical and Electronics Engineers (2008)

25. Isychev, A., Darulova, E.: Scaling up roundoff analysis of functional data structure
programs. In: Proceedings of the 30th International Symposium on Static Analysis,
SAS 2023. Lecture Notes in Computer Science, vol. 14284, pp. 371–402. Springer
(2023). https://doi.org/10.1007/978-3-031-44245-2 17

26. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
C: A software analysis perspective. Formal Aspects of Computing 27(3), 573–609
(2015). https://doi.org/10.1007/S00165-014-0326-7

27. Miné, A.: Relational abstract domains for the detection of floating-point run-time
errors. In: Proceedings of the 13th European Symposium on Programming Lan-
guages and Systems, ESOP 2004. Lecture Notes in Computer Science, vol. 2986,
pp. 3–17. Springer (2004). https://doi.org/10.1007/978-3-540-24725-8 2

https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1145/2535838.2535874
https://arxiv.org/abs/2004.11960
https://doi.org/10.1109/TC.2010.128
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://doi.org/10.1007/978-3-642-14295-6_22
https://doi.org/10.1007/11823230_3
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/978-3-319-03542-0_4
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/978-3-031-44245-2_17
https://doi.org/10.1007/S00165-014-0326-7
https://doi.org/10.1007/978-3-540-24725-8_2

18 L. Titolo et al.

28. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.: Automatic estimation of verified
floating-point round-off errors via static analysis. In: Proceedings of the 36th Inter-
national Conference on Computer Safety, Reliablilty, and Security, SAFECOMP
2017. Springer (2017). https://doi.org/10.1007/978-3-319-66266-4 14

29. Moscato, M., Titolo, L., Feliú, M., Muñoz, C.: Provably correct floating-point im-
plementation of a point-in-polygon algorithm. In: Proceedings of the 23nd Inter-
national Symposium on Formal Methods, FM 2019. Lecture Notes in Computer
Science, vol. 11800, pp. 21–37. Springer (2019). https://doi.org/10.1007/978-3-030-
30942-8 3

30. Muñoz, C., Narkawicz, A., Hagen, G., Upchurch, J., Dutle, A., Consiglio, M.:
DAIDALUS: Detect and Avoid Alerting Logic for Unmanned Systems. In: Pro-
ceedings of the 34th Digital Avionics Systems Conference (DASC 2015). Prague,
Czech Republic (September 2015)

31. Narkawicz, A., Hagen, G.: Algorithms for collision detection between a point and a
moving polygon, with applications to aircraft weather avoidance. In: Proceedings
of the AIAA Aviation Conference (2016)

32. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for
global optimization. In: Proceedings of the 5th International Conference on Verified
Software: Theories, Tools, Experiments, VSTTE 2013. Lecture Notes in Computer
Science, vol. 8164, pp. 326–343. Springer (2013). https://doi.org/10.1007/978-3-
642-54108-7 17

33. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Pro-
ceedings of the 11th International Conference on Automated Deduction, CADE
1992. Lecture Notes in Computer Science, vol. 607, pp. 748–752. Springer (1992).
https://doi.org/10.1007/3-540-55602-8 217

34. Panchekha, P., Sanchez-Stern, A., Wilcox, J., Z., T.: Automatically improving
accuracy for floating point expressions. In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2015.
pp. 1–11. ACM (2015). https://doi.org/10.1145/2737924.2737959

35. Ramananandro, T., Mountcastle, P., Meister, B., Lethin, R.: A unified Coq frame-
work for verifying C programs with floating-point computations. In: Proceedings
of CPP 2016. pp. 15–26. ACM (2016). https://doi.org/10.1145/2854065.2854066

36. Rubio-González, C., Nguyen, C., Nguyen, H., Demmel, J., Kahan, W., Sen, K.,
Bailey, D., Iancu, C., Hough, D.: Precimonious: tuning assistant for floating-
point precision. In: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC’13. pp. 27:1–27:12. ACM (2013).
https://doi.org/10.1145/2503210.2503296

37. Solovyev, A., Jacobsen, C., Rakamaric, Z., Gopalakrishnan, G.: Rigorous esti-
mation of floating-point round-off errors with Symbolic Taylor Expansions. In:
Proceedings of the 20th International Symposium on Formal Methods, FM 2015.
Lecture Notes in Computer Science, vol. 9109, pp. 532–550. Springer (2015).
https://doi.org/10.1007/978-3-319-19249-9 33

38. Thévenoux, L., Langlois, P., Martel, M.: Automatic source-to-source error com-
pensation of floating-point programs. In: 18th IEEE International Conference on
Computational Science and Engineering, CSE 2015. pp. 9–16. IEEE Computer
Society (2015). https://doi.org/10.1109/CSE.2015.11

39. Titolo, L., Feliú, M., Moscato, M., Muñoz, C.: An abstract interpretation frame-
work for the round-off error analysis of floating-point programs. In: Proceedings of
the 19th International Conference on Verification, Model Checking, and Abstract
Interpretation, VMCAI 2018. Lecture Notes in Computer Science, vol. 10747, pp.
516–537. Springer (2018). https://doi.org/10.1007/978-3-319-73721-8 24

https://doi.org/10.1007/978-3-319-66266-4_14
https://doi.org/10.1007/978-3-030-30942-8_3
https://doi.org/10.1007/978-3-030-30942-8_3
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/978-3-642-54108-7_17
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/2854065.2854066
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1007/978-3-319-19249-9_33
https://doi.org/10.1109/CSE.2015.11
https://doi.org/10.1007/978-3-319-73721-8_24

PRECiSA 4.0 19

40. Titolo, L., Moscato, M., Feliú, M., Muñoz, C.: Automatic generation of guard-
stable floating-point code. In: Proceedings of the 16th International Conference on
Integrated Formal Methods (IFM 2020). Lecture Notes in Computer Science, vol.
12546, pp. 141–159. Springer (2020). https://doi.org/10.1007/978-3-030-63461-2 8

41. Titolo, L., Moscato, M., Muñoz, C., Dutle, A., Bobot, F.: A formally verified
floating-point implementation of the Compact Position Reporting Algorithm. In:
Proceedings of the 22nd International Symposium on Formal Methods, FM 2018.
Lecture Notes in Computer Science, vol. 10951, pp. 364–381. Springer (2018).
https://doi.org/10.1007/978-3-319-95582-7 22

42. Titolo, L., Muñoz, C., Feliú, M., Moscato, M.: Eliminating unstable tests in
floating-point programs. In: Proceedings of the 28th International Symposium
on Logic-Based Program Synthesis and Transformation, LOPSTR 2018, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 11408, pp. 169–183.
Springer (2018). https://doi.org/10.1007/978-3-030-13838-7 10

43. Yi, X., Chen, L., Mao, X., Ji, T.: Efficient automated repair of high floating-point
errors in numerical libraries. Proc. ACM Programming Languages 3(POPL), 56:1–
56:29 (2019). https://doi.org/10.1145/3290369

https://doi.org/10.1007/978-3-030-63461-2_8
https://doi.org/10.1007/978-3-319-95582-7_22
https://doi.org/10.1007/978-3-030-13838-7_10
https://doi.org/10.1145/3290369

	Rigorous Floating-Point Round-Off Error Analysis in PRECiSA 4.0

